Show simple item record

dc.contributor.advisorIyer, Vishnu Mahadeva
dc.contributor.authorUttam, Vishwabandhu
dc.date.accessioned2023-05-25T04:56:58Z
dc.date.available2023-05-25T04:56:58Z
dc.date.submitted2023
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/6107
dc.description.abstractTriple Active Bridge (TAB) converter is a multi-port DC-DC converter. This converter is an extension of the popular Dual Active Bridge converter. It features desirable traits of the DAB converter, such as high power density, galvanic isolation, and bi-directional power flow between any of the ports. As in other multi-port converters, redundant power conversion is minimized through component sharing among the ports in a TAB converter. All the switches in a TAB converter can undergo soft-switching over a wide range of operating points, reducing switching losses and the size of auxiliary components. The multiple degrees of freedom in modulating a TAB converter offer several design and operational flexibilities. However, this converter has yet to come into the limelight despite these advantages. One of the reasons is the lack of a unified analytical framework for the design and operation of this converter. The existing models for the TAB converter are limited in scope and cannot be easily used for the design and operational optimization of the converter. This work focuses on developing simple, unified models for analyzing the TAB converter. Firstly, the popular Fundamental Harmonic Approximated (FHA) large-signal and small- signal models are evaluated to understand their limitations. Improved large-signal and small-signal Generalised Harmonic Models (GHM) are developed by incorporating the impact of higher-order harmonics. While the GHM is shown to be superior for small-signal analysis of the converter and the design of a closed-loop control system, it is not suitable to analyze the soft-switching bounds of the TAB converter. To overcome the limitations of GHM, a Unified Model that incorporates the impact of the magnetising inductance of the three-winding transformer is proposed. The Unified Model can accurately predict the AC port currents at the switching instants and is used to study the soft-switching bounds of the TAB converter. The GHM and Unified Model are validated through extensive switching circuit simulations and experimental results from a 1 kW hardware prototype developed in the laboratory. Further, a new design algorithm for the TAB converter is proposed. The proposed algorithm leverages the FHA model’s simplicity and the Unified Model’s accuracy. Finally, a new modulation scheme based on Penta Phase Shift with five degrees of freedom is proposed to achieve soft-switching across the operational range of the TAB converter.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseries;ET00120
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectDC-DC Converteren_US
dc.subjectTriple Active Bridgeen_US
dc.subjectTABen_US
dc.subjectDAB converteren_US
dc.subjectGeneralised Harmonic Modelsen_US
dc.subject.classificationElectrical Engineering: Power Electronicsen_US
dc.titleA Unified Modeling Approach for Design and Performance Improvement of Triple Active Bridge Converteren_US
dc.typeThesisen_US
dc.degree.nameMTech (Res)en_US
dc.degree.levelMastersen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineEngineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record