Show simple item record

dc.contributor.advisorChandran, Sunil L
dc.contributor.authorHashim, Talha
dc.date.accessioned2023-05-08T09:57:44Z
dc.date.available2023-05-08T09:57:44Z
dc.date.submitted2023
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/6089
dc.description.abstractThe anti-Ramsey number ar(G,H) with input graph G and pattern graph H, is the maximum positive integer k such that there exists an edge coloring of G using k colors, in which there are no rainbow subgraphs isomorphic to H in G. (H is rainbow if all its edges get distinct colors). The concept of anti-Ramsey number was introduced by Erdos, Simanovitz, and Sos in 1973. Thereafter several researchers investigated this concept in the combinatorial setting. The cases where pattern graph H is a complete graph K_r, a path P_r or a star K_{1,r} for a fixed positive integer r, are well studied.Recently, Feng et al. revisited the anti-Ramsey problem for the pattern graph K_{1,t} (for t geq 3) purely from an algorithmic point of view, due to its applications in interference modeling of wireless networks. They posed it as an optimization problem, the maximum edge q-coloring problem. For a graph G and an integer q geq 2, an edge q-coloring of G is an assignment of colors to edges of G, such that edges incident on a vertex span at most q distinct colors. The maximum edge q-coloring problem seeks to maximize the number of colors in an edge q- coloring of the graph G. Note that the optimum value of the edge q-coloring problem of G equals ar(G,K_{1,q+1}). We study ar(G,K_{1,t}), the anti-Ramsey number of stars, for each fixed integer t geq 3, both from combinatorial and algorithmic point of view. The first of our main results, presents an upper bound for ar(G,K_{1,q+1}), in terms of number of vertices and the minimum degree of G. The second one improves this result for the case of triangle free input graphs. For a positive integer t, let H_t denote a subgraph of G with maximum number of possible edges and maximum degree t. From an observation of Erdos, Simanovitz, and Sos, we get: |E(H_{q-1})| + 1 leq ar(G,K_{1,q+1}) leq |E(H_{q})|. For instance, when q=2, the subgraph E(H_{q-1}) refers to a maximum matching. It looks like |E(H_{q-1})| is the most natural parameter associated with the anti-ramsey number ar(G,K_{1,q+1}) and the approximation algorithms for the maximum edge coloring problem proceed usually by first computing the H_{q-1}, then coloring all its edges with different colors and by giving one (sometimes more than one) extra colors to the remaining edges. The approximation guarantees of these algorithms usually depend on upper bounds for ar(G,K_{1,q+1}) in terms of |E(H_{q-1})|. Our third main result presents an upper bound for ar(G,K_{1,q+1}) in terms of |E(H_{q-1})|. All our results have algorithmic consequences. For some large special classes of graphs, such as d-regular graphs, where d geq 4, our results can be used to prove a better approximation guarantee for the sub-factor based algorithm. We also show that all our bounds are almost tight. Results for the case q=2 were done earlier by Chandran et al. In this thesis, we extend it further for each fixed integer q greater then 2en_US
dc.language.isoen_USen_US
dc.relation.ispartofseries;ET00103
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectanti-Ramsey numberen_US
dc.subjectedge coloring problemen_US
dc.subjectGraphsen_US
dc.subject.classificationResearch Subject Categories::TECHNOLOGY::Information technology::Computer scienceen_US
dc.titleImproved approximation bounds on maximum edge q coloring of dense graphsen_US
dc.typeThesisen_US
dc.degree.nameMTech (Res)en_US
dc.degree.levelMastersen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineEngineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record