• Login
    View Item 
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Electrical Communication Engineering (ECE)
    • View Item
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Electrical Communication Engineering (ECE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-connectivity for Urllc and Coexistence with Embb in Time-varying and Fading Channels

    View/Open
    Thesis full text (1.883Mb)
    Author
    Saikesava, Govindu
    Metadata
    Show full item record
    Abstract
    Ultra-reliable and low latency communications (URLLC) is a novel use case of 5G. It has challenging requirements like such as low block error rates (BLERs) and stringent latency targets. Multi-connectivity, in which multiple base stations (BSs) transmit the same data to the user, is a key technique in 5G to meet the stringent reliability requirements. URLLC data is immediately transmitted by puncturing the ongoing enhanced mobile broadband (eMBB) transmission to satisfy the latency constraint. However, this results in an increase in the BLER of the eMBB users. We first propose a low complexity multi-connectivity MCS selection algorithm (MCMSA) to select the subset of co-operating BSs and the modulation and coding schemes (MCSs) they employ. The goal is to minimize the eMBB throughput loss while satisfying the URLLC constraints. We study two types of multi-connectivity: orthogonal transmission (OT) and joint transmission (JT). We derive tractable expressions to calculate the achievability, which is the probability that the URLLC reliability requirement can be satisfied by the multi-connectivity. We do so for flat fading and frequency-selective fading scenarios. Our results highlight the trade-offs between URLLC achievability, eMBB throughput loss, and channel state information (CSI) feedback overhead of OT and JT. We then consider time-varying channels, in which the CSI report from the URLLC user to the BSs about the downlink channel gains becomes partially outdated by the time the BSs transmit data. We propose a novel stochastic BLER constraint for selecting MCSs at the time of transmission. We derive expressions for the conditional probability that the BLER of an MCS at the time of transmission is less than the target given the CSI fed back. These expressions enable the selection of MCS at the time transmission and meets the URLLC error target with high probability. Our results bring out the significant impact of feedback delays on reliability even at moderate Doppler spreads.
    URI
    https://etd.iisc.ac.in/handle/2005/5919
    Collections
    • Electrical Communication Engineering (ECE) [402]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV