Show simple item record

dc.contributor.advisorRamesh, K
dc.contributor.authorPumlianmunga
dc.date.accessioned2021-10-16T10:54:57Z
dc.date.available2021-10-16T10:54:57Z
dc.date.submitted2018
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/5425
dc.description.abstractChalcogenide glass (ChG) materials have gained wide attention because of their applications in phase change non-volatile memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), infrared detection and thermal imaging. One of the significant properties of ChG materials is the change in the resistivity of the material when a metal such as Al, Cu, and Sb are added. Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid transition between a high resistive OFF state to low resistive ON state driven by an external electric field and characterized by a threshold voltage. The contrast in electrical resistivity between the OFF and ON state is > 103 Ohms. This electrical switching can be of two types: (i) Threshold switching and (ii) memory switching. Upon the removal of the applied field threshold switching device reverts back to the OFF state, whereas the memory device retains the ON state. Memory switching, a non-reversible transition is understood based on the thermal mechanism where the applied electric field drives the system from amorphous/glass (OFF) to crystalline (ON) state. Threshold switching, a reversible transition is understood based on electronic transitions. Electrical switching is mainly influence by the network connectivity, rigidity, local structure, and glass forming ability. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications. In this work, we have studied the influence of network connectivity,local structure and glass forming ability on electrical switching in melt quenched bulk Al-Te, Al-Te-Sb, Al-As-Te and GeTe4-As2Se3 chalcogenide glasses. Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Raman Spectroscopy, Magic Angle Nuclear Magnetic Resonance (MAS-NMR), Nano-Indentation methods were used to study the properties of these glasses. From the obtained results the threshold and memory switching exhibited by these glasses were understood uniquely by the thermal mechanism.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseries;G29450
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectChalcogenide glassen_US
dc.subjectoptical rewritable disksen_US
dc.subjectElectrical switchingen_US
dc.subjectGlassen_US
dc.subject.classificationResearch Subject Categories::NATURAL SCIENCES::Physicsen_US
dc.titleInfluence of local structure and network connectivity on the electrical switching of some Te-based chalcogenide glassesen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record