Show simple item record

dc.contributor.advisorAyyer, Arvind
dc.contributor.authorGhosh, Subhajit
dc.date.accessioned2020-12-29T07:10:40Z
dc.date.available2020-12-29T07:10:40Z
dc.date.submitted2020
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/4779
dc.description.abstractThis thesis studies mixing times for three random walk models. Specifically, these are random walks on the alternating group, the group of signed permutations and the complete monomial group. The details for the models are given below: The random walk on the alternating group: We investigate the properties of a random walk on the alternating group $A_n$ generated by $3$-cycles of the form $(i, n − 1, n)$ and $(i, n, n − 1)$. We call this the transpose top-2 with random shuffle. We find the spectrum of the transition matrix of this shuffle. We obtain the sharp mixing time by proving the total variation cutoff phenomenon at $(n − 3/2) \log n$ for this shuffle. The random walk on the group of signed permutations: We consider a random walk on the hyperoctahedral group $B_n$ generated by the signed permutations of the form $(i, n)$ and $(−i, n)$ for $1 ≤ i ≤ n$. We call this the flip-transpose top with random shuffle on $B_n$. We find the spectrum of the transition probability matrix for this shuffle. We prove that this shuffle exhibits the total variation cutoff phenomenon with cutoff time $n \log n$. Furthermore, we show that a similar random walk on the demihyperoctahedral group $D_n$ generated by the identity signed permutation and the signed permutations of the form $(i, n)$ and $(−i, n)$ for $1 ≤ i < n$ also has a cutoff at $(n − 1/2) \log n$. The random walk on the complete monomial group: Let $G_1 ⊆ · · · ⊆ G_n ⊆ · · ·$ be a sequence of finite groups with $|G_1| > 2$. We study the properties of a random walk on the complete monomial group $G_n\wrS_n$ generated by the elements of the form $(e, . . . , e, g; id)$ and $(e, . . . , e, g^{−1} , e, . . . , e, g; (i, n))$ for $g ∈ G_n, 1 ≤ i < n$. We call this the warp-transpose top with random shuffle on $G_n\wr S_n$. We find the spectrum of the transition probability matrix for this shuffle. We prove that the mixing time for this shuffle is of order $n \log n + (1/2) n \log(|G_n | − 1)$. We also show that this shuffle satisfies cutoff phenomenon with cutoff time $n \log n$ if $|G_n| = o(n^{δ})$ for all $δ > 0$.en_US
dc.language.isoen_USen_US
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectrandom walken_US
dc.subjectcutoffen_US
dc.subjectYoung-Jucys-Murphy elementsen_US
dc.subject.classificationMathematics (probability theory, representation theory of finite groups, and algebraic combinatorics)en_US
dc.titleTotal variation cutoff for random walks on some finite groupsen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record