Show simple item record

dc.contributor.advisorSivakumar, D
dc.contributor.authorBhat, Maanasa
dc.date.accessioned2020-12-07T11:46:16Z
dc.date.available2020-12-07T11:46:16Z
dc.date.submitted2018
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/4720
dc.description.abstractThe modelling of spray-wall interaction encountered in engine combustors relies heavily on studies of single drop impact on heated solid surfaces. In the present thesis, the impact of a single fuel drop on a hot, smooth stainless-steel surface is experimentally examined using high speed visualization. Four different fuels of significantly varying physical properties (heptane, decane, Jet A-1 and diesel) are considered. The condition of impacting fuel drop, characterized in terms of Weber number (We), is varied in the range 27-903. The temperature of the solid surface (Ts) is varied in the range 25-410 oC encompassing all heat transfer regimes from convection to film boiling. The analysis of fuel drop impact on an unheated surface (Ts = 25 oC) reveals that the lamella spreads sluggishly even beyond the end-point of the inertia driven primary spreading phase. This new phase of fuel impact dynamics is termed in the present study as ‘post-spreading’. The spreading rate of the fuel drops in the post-spreading phase is dependent on We and is much lower than that dictated by Tanner’s Law for spontaneous drop spreading. For the impact of fuel drops on hot stainless-steel surfaces, regime maps with We on the X-axis and Ts on the Y-axis, highlighting various heat transfer regimes and morphological outcomes are constructed. Quantitative trends on the variation of maximum spread factor (max) for the fuel drops on the hot surface are presented. With the help of existing theoretical models for predicting max, it is concluded that viscosity of the fuel plays a major role in the determination of temperature dependency of βmax. For drop impact in film evaporation regime, an empirical model for max involving an explicit surface temperature term in the form of normalized value T* is formulated from the experimental data and is found to agree well with similar data from literature. Further details of fuel drop impact dynamics on the hot surface in other heat transfer regimes including contact boiling and Leidenfrost regimes are presented.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseries;G29593
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectspray-wall interactionen_US
dc.subjectfuel dropen_US
dc.subject.classificationResearch Subject Categories::TECHNOLOGY::Engineering mechanics::Mechanical and thermal engineeringen_US
dc.titleExperimental Investigation of Fuel Drop Impact on Unheated and Heated Soliden_US
dc.typeThesisen_US
dc.degree.nameMSen_US
dc.degree.levelMastersen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineEngineeringen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record