dc.description.abstract | Mixed systems made from a combination of ferroelectric (FE) and antiferroelectric (AFE) compounds, exhibit various effects of disorder in different temperature regions. The kind of effects observed, depend on the technique and the window of observation employed. Model systems, like Potassium Ammonium dihydrogen phosphate (KADP), Rubidium Ammonium dihydrogen phosphate (RADP) and BPxBPI(1-x) , with H-bonding networks, have been well studied by dielectric techniques. These investigations have revealed disorder effects like deviations from Curie Weiss law, progressive broadening of dielectric loss curves and dispersion of dielectric constant, at sufficiently low temperatures. NMR studies in such systems are meager and mainly members of the KDP family, like Rubidium ammonium dihydrogen phosphate (RADP) and arsenate (RADA) have been investigated using mainly 2H and 87Rb NMR. On the other hand, proton NMR has been much less used, and our focus is to exploit its power/potential to study 1H group dynamics in the presence (and absence) of disorder in condensed matter systems.
This thesis describes the results of proton NMR investigations in two mixed systems of ferroelectric and antiferroelectric compounds namely, (i) Betaine phosphate (BP, AFE) and Betaine phosphite (BPI, FE) and (ii) Betaine phosphate and Glycine phosphite (GPI, FE). The aim of the study is to obtain information on 1H group dynamics (activation energies and pre-exponential factors) and the effects of micro-spatial disorder. The former system is shown to exhibit orientational glass behavior by extensive dielectric investigations. BP-GPI system is synthesized for the first time and our proton NMR investigation has exhibited interesting effects of disorder like deviation from expected BPP behavior. Further, both systems have exhibited quantum tunneling effects, revealing a gradual transition from classical regime to quantum regime. Biexponential magnetization recovery at low temperatures has also been observed indicating the existence of disorder.
A combination of AFE and FE compounds of this type form a mixed system, over a broad range of compositions, in which the long-range electric order is suppressed owing to frustration effects. Such systems have been treated as dipolar analogues of spin glasses and are known as ‘orientation glasses’ (OG), ‘proton glasses’ (PG) or ‘pseudo-spin glasses. Although the frustrated condensed matter system is crystalline in nature, there is an underlying microstructural randomness due to local fluctuations of the composition which usually results in static lattice strains, which are called random fields. It has been shown that these random fields can also have a pronounced effect on the spin lattice relaxation time as observed in NMR experiments. Depending on the relative concentration and temperature, the mixed system exhibits a range of states (x-T phase diagram) like FE, OG, coexisting OG and AFE, and AFE.
These mixed systems exhibit various kinds of effects of disorder in different temperature regimes which depend upon the technique and window of observation. For e.g., using dielectric spectroscopy we can study the behavior of the electric dipoles during various phases and the effects of frustration seen as dispersion of dielectric constants and broadening of loss curves etc. Through quadrupole perturbed NMR study of systems containing nuclei like 87Rb or 2H, we learn about site-specific inhomogeneities and distribution of EFG in the system. Proton NMR study in the mixed systems, though not much used so far, is a powerful technique to shed light on the dynamics, disorder and Quantum tunneling effects.
Our proton SLR time measurements have been carried out at two Larmor frequencies of 23.3 MHz and 11.4 MHz, in the temperature range of 300 K to 4 K and the results are presented in this thesis, which is divided into four chapters | en_US |