Show simple item record

dc.contributor.advisorJohn, Vinod
dc.contributor.authorDam, Shimul Kumar
dc.date.accessioned2020-08-13T09:20:43Z
dc.date.available2020-08-13T09:20:43Z
dc.date.submitted2019
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/4534
dc.description.abstractPower converters are used in battery-based storage systems in many applications. Apart from the task of regulating the charging and discharging, the power electronic converters can also help to monitor battery condition and to avoid over-charge or over-discharge of any battery cell. One approach to monitoring the cell condition is by measuring its impedance. The power converter for charging and discharging of the cell stack can be used for online measurement of cell impedances. The challenges involved in control, measurement, and the hardware requirements for impedance measurement are analyzed in this work, and suitable solutions are proposed. A Proportional Integral Resonant (PIR) controller-based control scheme and a DAC based measurement method are proposed for impedance measurement over the required frequency range. Two di erent approaches are proposed to achieve su cient output voltage resolution for generating small amplitude voltage perturbation. One approach achieves high voltage resolution by replacing the single-leg buck converter with a multi-leg interleaved converter. The other approach uses a low-power rated auxiliary converter in series with the main converter to achieve high voltage resolution. Both of the methods are experimentally veri ed and compared with commercial equipment and the advantages of each approach are evaluated. A voltage equalizer is a power electronic circuit that equalizes the cell voltages in a series- connected cell stack to avoid over-charge and over-discharge of any individual cell. A low- cost voltage equalizer using selection switches for a cell to cell equalization is proposed. This equalizer uses capacitive voltage level shifting to avoid bulky and lossy isolation transformer and to reduce cost. A new approach with a lower number of low-frequency selection switches further reduces the equalizer cost. A high-performance voltage equalizer is also proposed to achieve fast equalization by direct multi-cell to multi-cell charge transfer. This topology is shown to provide soft-switching with high e ciency. The equalizer is controlled in an open loop. The equalization currents do not reduce with progress in voltage equalization, making this topology faster than the existing open-loop multi-cell to multi-cell topologies. A modularization method is proposed for this topology to provide a direct path for charge transfer from any cell in one module to any cell in another module. The operation of both the equalizers and the modularization technique are experimentally veri ed which con rms the theoretical analysis.en_US
dc.language.isoen_USen_US
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectPower convertersen_US
dc.subjectProportional Integral Resonant controlleren_US
dc.subject.classificationResearch Subject Categories::TECHNOLOGY::Electrical engineering, electronics and photonics::Electrical engineeringen_US
dc.titlePower Electronic Converters for Condition Monitoring and Voltage Equalization of Batteriesen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineEngineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record