Show simple item record

dc.contributor.advisorMisra, Gadadhar
dc.contributor.authorSen, Samrat
dc.date.accessioned2020-06-12T05:11:09Z
dc.date.available2020-06-12T05:11:09Z
dc.date.submitted2019
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/4455
dc.description.abstractLet $\Omega \subseteq \mathbb C^m$ be a bounded connected open set and $\mathcal H \subseteq \mathcal O(\Omega)$ be an analytic Hilbert module, i.e., the Hilbert space $\mathcal H$ possesses a reproducing kernel $K$, the polynomial ring $\mathbb C[\underline{z}]\subseteq \mathcal H$ is dense and the point-wise multiplication induced by $p\in \mathbb C[\underline{z}]$ is bounded on $\mathcal H$. We fix an ideal $\mathcal I \subseteq \mathbb C[\underline{z}]$ generated by $p_1,\ldots,p_t$ and let $[\mathcal I]$ denote the completion of $\mathcal I$ in $\mathcal H$. Let $X:[\mathcal I] \to \mathcal H$ be the inclusion map. Thus we have a short exact sequence of Hilbert modules \begin{tikzcd} 0 \arrow{r} &\mbox{[} \mathcal I \mbox{]} \arrow{r}{X} & {\mathcal H} \arrow{r}{\pi} & \mathcal Q \arrow{r}& 0 , \end{tikzcd} where the module multiplication in the quotient $\mathcal Q:=[\mathcal I]^\perp$ is given by the formula $m_p f = P_{[\mathcal I]^\perp} (p f),$ $p\in \mathbb C[\underline{z}],\,f\in \mathcal Q$. The analytic Hilbert module $\mathcal H$ defines a subsheaf $\mathcal S^\mathcal H$ of the sheaf $\mathcal O(\Omega)$ of holomorphic functions defined on $\Omega$. For any open $U \subset \Omega$, it is obtained by setting $$\mathcal S^\mathcal H(U) := \Big \{\, \sum_{i=1}^n ({f_i|}_U) h_i : f_i \in \mathcal H, h_i \in \mathcal O(U), n\in\mathbb N\,\Big \}.$$ This is locally free and naturally gives rise to a holomorphic line bundle on $\Omega$. However, in general, the sheaf corresponding to the sub-module $[\mathcal I]$ is not locally free but only coherent. Building on the earlier work of S. Biswas, a decomposition theorem is obtained for the kernel $K_{[\mathcal I]}$ along the zero set $V_{[\mathcal I]}:=\big\{z\in \mathbb C^m: f(z) = 0, f\in [\mathcal I]\big\}$ which is assumed to be a submanifold of codimension $t$: There exists anti-holomorphic maps $F_1, \ldots, F_t: V_{[\mathcal I]}\to [\mathcal I]$ such that $$ K_{[\mathcal I]}(\cdot, u) = \overline{p_1(u)} F^1_w(u) + \cdots \overline{p_t(u)} F_w^t(u),\, u\in \Omega_w,$$ in some neighbourhood $\Omega_w$ of each fixed but arbitrary $w\in V_{[\mathcal I]}$ for some anti-holomorphic maps $F_w^1, \ldots, F^t_w: \Omega_w \to [\mathcal I]$ extending $F_1, \ldots,F_t$. The anti-holomorphic maps $F_1, \ldots,F_t$ are linearly independent on $V_{[\mathcal I]}$, defining a rank $t$ anti-holomorphic Hermitian vector bundle on it. This gives rise to complex geometric invariants for the pair $([\mathcal I], \mathcal H)$. Next, using a decomposition formula obtained from an earlier work of Douglas, Misra and Varughese, the maps $F_1, \ldots, F_t: V_{[\mathcal I]}\to [\mathcal I]$ are explicitly determined with the additional assumption that $p_{i},p_{j}$ are relatively prime for $i\neq j$. Using this, a line bundle on $V_{[\mathcal I]}\times\mathbb{P}^{t-1}$ is constructed via the monoidal transformation around $V_{[\mathcal I]}$ which provides useful invariants for $([\mathcal I], \mathcal H)$. Localising the modules $[\mathcal I]$ and $\mathcal H$ at $w\in \Omega$, we obtain the localization $X(w)$ of the module map $X$. The localizations are nothing but the quotient modules $[\mathcal I]/{[\mathcal I]_w}$ and $\mathcal H/{\mathcal H_w}$, where $[\mathcal I]_w$ and $\mathcal H_w$ are the maximal sub-modules of functions vanishing at $w$. These clearly define anti-holomorphic line bundles $E_{[\mathcal I]}$ and $E_\mathcal H$, respectively, on $\Omega\setminus V_{[\mathcal I]}$. However, there is a third line bundle, namely, ${\rm Hom}(E_\mathcal H, E_{[\mathcal I]})$ defined by the anti-holomorphic map $X(w)^*$. The curvature of a holomorphic line bundle $\mathcal L$ on $\Omega$, computed with respect to a holomorphic frame $\gamma$ is given by the formula $$\mathcal K_\mathcal L(z) = \sum_{i,j=1}^{m}\tfrac{\partial^2}{\partial z_i \partial \bar{z}_j}\log\|\gamma(z)\|^2 dz_i \wedge d\bar{z}_j.$$ It is a complete invariant for the line bundle $\mathcal L$. The alternating sum $$ \mathcal A_{[\mathcal I], \mathcal H}(w):=\mathcal K_X(w) - \mathcal K_{[\mathcal{I}]}(w) + \mathcal K_{\mathcal{H}}(w) = 0,\,\, w\in \Omega \setminus V_{[\mathcal I]}, $$ where $\mathcal K_X$, $\mathcal K_{[\mathcal{I}]}$ and $\mathcal K_{\mathcal{H}}$ denote the curvature $(1,1)$ form of the line bundles $E_X$, $E_{[\mathcal{I}]}$ and $E_{\mathcal{H}}$, respectively. Thus it is an invariant for the pair $([\mathcal I], \mathcal H)$. However, when $\mathcal I$ is principal, by taking distributional derivatives, $\mathcal A_{[\mathcal I], \mathcal H}(w)$ extends to all of $\Omega$ as a $(1,1)$ current. Consider the following diagram of short exact sequences of Hilbert modules: $$(1)\,\,\,\,\,\,\,\,\,\,\, \begin{tikzcd} 0\arrow{r} &\mbox{[}\mathcal I\mbox{]} \arrow{d} \arrow{r} {X} & {\mathcal H}\arrow{d}{L} \arrow{r}{\pi} & \mathcal Q\arrow{d} \arrow{r}& 0\\ 0\arrow{r} &\mbox{[}\widetilde{\mathcal I}\mbox{]} \arrow{r}{\widetilde{X}} &\widetilde{\mathcal H} \arrow{r}{\tilde{\pi}}& \widetilde{\mathcal Q} \arrow{r}& 0, \end{tikzcd} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, (2)\,\,\,\,\,\,\,\,\,\,\, \begin{tikzcd} \mbox{[}\mathcal I\mbox{]} \arrow{d} \arrow{r} {X} & {\mathcal H}\arrow{d}{L}\\ \mbox{[}\widetilde{\mathcal I}\mbox{]} \arrow{r}{\widetilde{X}} &\widetilde{\mathcal H} \end{tikzcd}$$ It is shown that if $\mathcal A_{[\mathcal I], \mathcal H}(w)=\mathcal A_{[\widetilde{\mathcal I}], \widetilde{\mathcal H}}(w)$, then $L|_{[\mathcal I]}$ makes the second diagram commute. Hence, if $L$ is bijective, then $[\mathcal I]$ and $[\widetilde{\mathcal I]}$ are equivalent as Hilbert modules. It follows that the alternating sum is an invariant for the ``rigidity'' phenomenon.en_US
dc.language.isoen_USen_US
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectpolynomial ringen_US
dc.subjectdecomposition theoremen_US
dc.subjectVector bundlesen_US
dc.subjectkernel decomposition formulaen_US
dc.subject.classificationResearch Subject Categories::MATHEMATICS::Algebra, geometry and mathematical analysis::Algebra and geometryen_US
dc.titleGeometric invariants for a class of submodules of analytic Hilbert modulesen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record