Show simple item record

dc.contributor.advisorNandakumaran, A K
dc.contributor.authorAiyappan, S
dc.date.accessioned2018-06-13T07:46:45Z
dc.date.accessioned2018-07-31T06:09:24Z
dc.date.available2018-06-13T07:46:45Z
dc.date.available2018-07-31T06:09:24Z
dc.date.issued2018-06-13
dc.date.submitted2017
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/3696
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/4566/G28585-Abs.pdfen_US
dc.description.abstractIn this thesis, we study homogenization of optimal control problems in various oscillatory domains. Specifically, we consider four types of domains given in Figure 1 below. Figure 1: Oscillating Domains The thesis is organized into six chapters. Chapter 1 provides an introduction to our work and the rest of the thesis. The main contributions of the thesis are contained in Chapters 2-5. Chapter 6 presents the conclusions of the thesis and possible further directions. A brief description of our work (Chapters 2-5) follows: Chapter 2: Asymptotic behaviour of a fourth order boundary optimal control problem with Dirichlet boundary data posed on an oscillating domain as in Figure 1(A) is analyzed. We use the unfolding operator to study the asymptotic behavior of this problem. Chapter 3: Homogenization of a time dependent interior optimal control problem on a branched structure domain as in Figure 1(B) is studied. Here we pose control on the oscillating interior part of the domain. The analysis is carried out by appropriately defined unfolding operators suitable for this domain. The optimal control is characterized using various unfolding operators defined at each branch of every level. Chapter 4: A new unfolding operator is developed for a general oscillating domain as in Figure 1(C). Homogenization of a non-linear elliptic problem is studied using this new un-folding operator. Using this idea, homogenization of an optimal control problem on a circular oscillating domain as in Figure 1(D) is analyzed. Chapter 5: Homogenization of a non-linear optimal control problem posed on a smooth oscillating domain as in Figure 1(C) is studied using the unfolding operator.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG28585en_US
dc.subjectUnfolding Operatorsen_US
dc.subjectOscillatory Domainsen_US
dc.subjectTwo-scale Convergenceen_US
dc.subjectBiharmonic Equationen_US
dc.subjectOscillating Boundary Domainen_US
dc.subjectOscillating Domainsen_US
dc.subjectOptimal Control Problemen_US
dc.subject.classificationMathematicsen_US
dc.titleUnfolding Operators in Various Oscillatory Domains : Homogenization of Optimal Control Problemsen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record