Show simple item record

dc.contributor.advisorVerma, Kaushal
dc.contributor.authorHaridas, Pranav
dc.date.accessioned2018-06-08T07:10:05Z
dc.date.accessioned2018-07-31T06:08:46Z
dc.date.available2018-06-08T07:10:05Z
dc.date.available2018-07-31T06:08:46Z
dc.date.issued2018-06-08
dc.date.submitted2015
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/3670
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/4540/G27320-Abs.pdfen_US
dc.description.abstractIn the first part of this thesis, we prove two density theorems for quadrature domains in Cn ,n≥2. It is shown that quadrature domains are dense in the class of all product domains of the form D×Ωwhere D⊂Cn−1 is a smoothly bounded pseudoconvex domain satisfying Bell’s Condition R and Ω⊂Cis a smoothly bounded domain. It is also shown that quadrature domains are dense in the class of all smoothly bounded complete Hartogs domains in C2. In the second part of this thesis, we study the behaviour of the critical points of the Green’s function when a sequence of domains Dk⊂Rn con-verges to a limiting domain Din the C∞-topology. It is shown that the limit-ing set of the critical points of the Green’s functions Gkfor domains Dk⊂Care the zeroes of the Bergman kernel of D. This generalizes a result of Solynin and Gustafsson, Sebbar.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG27320en_US
dc.subjectBargman Spanen_US
dc.subjectGreen’s Functionen_US
dc.subjectQuadrature Domainsen_US
dc.subjectBergman Kernelen_US
dc.subjectSolyninen_US
dc.subjectSebbaren_US
dc.subject.classificationMathematicsen_US
dc.titleThe Green's Function, the Bergman Kernel and Quadrature Domains in Cnen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record