Show simple item record

dc.contributor.advisorThagavelu. Sundaram
dc.contributor.authorBagchi, Sayan
dc.date.accessioned2018-05-30T06:59:27Z
dc.date.accessioned2018-07-31T06:08:48Z
dc.date.available2018-05-30T06:59:27Z
dc.date.available2018-07-31T06:08:48Z
dc.date.issued2018-05-30
dc.date.submitted2015
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/3641
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/4511/G26937-Abs.pdfen_US
dc.description.abstractIn this thesis we deal with two problems in harmonic analysis. In the first problem we discuss weighted norm inequalities for Weyl multipliers satisfying Mauceri’s condition. As an application, we prove certain multiplier theorems on the Heisenberg group and also show in the context of a theorem of Weis on operator valued Fourier multipliers that the R-boundedness of the derivative of the multiplier is not necessary for the boundedness of the multiplier transform. In the second problem we deal with a variation of a theorem of Mauceri concerning the Lp bound-edness of operators Mwhich are known to be bounded on L2 .We obtain sufficient conditions on the kernel of the operaor Mso that it satisfies weighted Lp estimates. As an application we prove Lp boundedness of Hermite pseudo-multipliers.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG26937en_US
dc.subjectWeyl Multipliersen_US
dc.subjectHermite Pseudo-multipliersen_US
dc.subjectFourier Multipliersen_US
dc.subjectWeighted Norm Inequalityen_US
dc.subjectMauceri’s Theoremen_US
dc.subjectHeisenberg Groupen_US
dc.subject.classificationMathematicsen_US
dc.titleWeighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliersen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record