Show simple item record

dc.contributor.advisorMisra, Gadadhar
dc.contributor.authorHota, Tapan Kumar
dc.date.accessioned2018-03-07T14:31:43Z
dc.date.accessioned2018-07-31T06:09:17Z
dc.date.available2018-03-07T14:31:43Z
dc.date.available2018-07-31T06:09:17Z
dc.date.issued2018-03-07
dc.date.submitted2012
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/3242
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/4103/G25580-Abs.pdfen_US
dc.description.abstractIn this report we survey some recent developments of relationship between Hausdorff moment sequences and subnormality of an unilateral weighted shift operator. Although discrete convolution of two Haudorff moment sequences may not be a Hausdorff moment sequence, but Hausdorff convolution of two moment sequences is always a moment sequence. Observing from the Berg and Dur´an result that the multiplication operator on Is subnormal, we discuss further work on the subnormality of the multiplication operator on a reproducing kernel Hilbert space, whose kernel is a point-wise product of two diagonal positive kernels. The relationship between infinitely divisible matrices and moment sequence is discussed and some open problems are listed.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG25580en_US
dc.subjectSubnormal Operatorsen_US
dc.subjectMoment Sequences (Mathematics)en_US
dc.subjectHausdroff Moment Sequencesen_US
dc.subjectMatrices, Infiniteen_US
dc.subjectKernel Hilbert Spaceen_US
dc.subjectKernels (Mathematics)en_US
dc.subjectBergman Kernelsen_US
dc.subject.classificationMathematicsen_US
dc.titleSubnormality and Moment Sequencesen_US
dc.typeThesisen_US
dc.degree.nameMSen_US
dc.degree.levelMastersen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record