Show simple item record

dc.contributor.advisorSitharam, T G
dc.contributor.authorKolathayar, Sreevalsa
dc.date.accessioned2018-02-22T21:11:37Z
dc.date.accessioned2018-07-31T05:41:32Z
dc.date.available2018-02-22T21:11:37Z
dc.date.available2018-07-31T05:41:32Z
dc.date.issued2018-02-23
dc.date.submitted2012
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/3170
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/4032/G25653-Abs.pdfen_US
dc.description.abstractPlanet earth is restless and one cannot control its inside activities and vibrations those leading to natural hazards. Earthquake is one of such natural hazards that have affected the mankind most. Most of the causalities due to earthquakes happened not because of earthquakes as such, but because of poorly designed structures which could not withstand the earthquake forces. The improper building construction techniques adopted and the high population density are the major causes of the heavy damage due to earthquakes. The damage due to earthquakes can be reduced by following proper construction techniques, taking into consideration of appropriate forces on the structure that can be caused due to future earthquakes. The steps towards seismic hazard evaluation are very essential to estimate an optimal and reliable value of possible earthquake ground motion during a specific time period. These predicted values can be an input to assess the seismic vulnerability of an area based on which new construction and the restoration works of existing structures can be carried out. A large number of devastating earthquakes have occurred in India in the past. The northern region of India, which is along the plate boundary of the Indian plate with the Eurasian plate, is seismically very active. The north eastern movement of Indian plate has caused deformation in the Himalayan region, Tibet and the North Eastern India. Along the Himalayan belt, the Indian and Eurasian plates converge at the rate of about 50 mm/year (Bilham 2004; Jade 2004). The North East Indian (NEI) region is known as one of the most seismically active regions in the world. However the peninsular India, which is far away from the plate boundary, is a stable continental region, which is considered to be of moderate seismic activity. Even though, the activity is considered to be moderate in the Peninsular India, world’s deadliest earthquake occurred in this region (Bhuj earthquake 2001). The rapid drifting of Indian plate towards Himalayas in the north east direction with a high velocity along with its low plate thickness might be the cause of high seismicity of the Indian region. Bureau of Indian Standard has published a seismic zonation map in 1962 and revised it in 1966, 1970, 1984 and 2002. The latest version of the seismic zoning map of India assigns four levels of seismicity for the entire Country in terms of different zone factors. The main drawback of the seismic zonation code of India (BIS-1893, 2002) is that, it is based on the past seismic activity and not based on a scientific seismic hazard analysis. Several seismic hazard studies, which were taken up in the recent years, have shown that the hazard values given by BIS-1893 (2002) need to be revised (Raghu Kanth and Iyengar 2006; Vipin et al. 2009; Mahajan et al. 2009 etc.). These facts necessitate a comprehensive study for evaluating the seismic hazard of India and development of a seismic zonation map of India based on the Peak Ground Acceleration (PGA) values. The objective of this thesis is to estimate the seismic hazard of entire India using updated seismicity data based on the latest and different methodologies. The major outcomes of the thesis can be summarized as follows. An updated earthquake catalog that is uniform in moment magnitude, has been prepared for India and adjoining areas for the period till 2010. Region specific magnitude scaling relations have been established for the study region, which facilitated the generation of a homogenous earthquake catalog. By carefully converting the original magnitudes to unified MW magnitudes, we have removed a major obstacle for consistent assessment of seismic hazards in India. The earthquake catalog was declustered to remove the aftershocks and foreshocks. Out of 203448 events in the raw catalog, 75.3% were found to be dependent events and remaining 50317 events were identified as main shocks of which 27146 events were of MW ≥ 4. The completeness analysis of the catalog was carried out to estimate completeness periods of different magnitude ranges. The earthquake catalog containing the details of the earthquake events until 2010 is uploaded in the website the catalog was carried out to estimate completeness periods of different magnitude ranges. The earthquake catalog containing the details of the earthquake events until 2010 is uploaded in the website the catalog was carried out to estimate completeness periods of different magnitude ranges. The earthquake catalog containing the details of the earthquake events until 2010 is uploaded in the website A quantitative study of the spatial distribution of the seismicity rate across India and its vicinity has been performed. The lower b values obtained in shield regions imply that the energy released in these regions is mostly from large magnitude events. The b value of northeast India and Andaman Nicobar region is around unity which implies that the energy released is compatible for both smaller and larger events. The effect of aftershocks in the seismicity parameters was also studied. Maximum likelihood estimations of the b value from the raw and declustered earthquake catalogs show significant changes leading to a larger proportion of low magnitude events as foreshocks and aftershocks. The inclusions of dependent events in the catalog affect the relative abundance of low and high magnitude earthquakes. Thus, greater inclusion of dependent events leads to higher b values and higher activity rate. Hence, the seismicity parameters obtained from the declustered catalog is valid as they tend to follow a Poisson distribution. Mmax does not significantly change, since it depends on the largest observed magnitude rather than the inclusion of dependent events (foreshocks and aftershocks). The spatial variation of the seismicity parameters can be used as a base to identify regions of similar characteristics and to delineate regional seismic source zones. Further, Regions of similar seismicity characteristics were identified based on fault alignment, earthquake event distribution and spatial variation of seismicity parameters. 104 regional seismic source zones were delineated which are inevitable input to seismic hazard analysis. Separate subsets of the catalog were created for each of these zones and seismicity analysis was done for each zone after estimating the cutoff magnitude. The frequency magnitude distribution plots of all the source zones can be found at http://civil.iisc.ernet.in/~sitharam . There is considerable variation in seismicity parameters and magnitude of completeness across the study area. The b values for various regions vary from a lower value of 0.5 to a higher value of 1.5. The a value for different zones vary from a lower value of 2 to a higher value of 10. The analysis of seismicity parameters shows that there is considerable difference in the earthquake recurrence rate and Mmax in India. The coordinates of these source zones and the seismicity parameters a, b & Mmax estimated can be directly input into the Probabilistic seismic hazard analysis. The seismic hazard evaluation of the Indian landmass based on a state-of-the art Probabilistic Seismic Hazard Analysis (PSHA) study has been performed using the classical Cornell–McGuire approach with different source models and attenuation relations. The most recent knowledge of seismic activity in the region has been used to evaluate the hazard incorporating uncertainty associated with different modeling parameters as well as spatial and temporal uncertainties. The PSHA has been performed with currently available data and their best possible scientific interpretation using an appropriate instrument such as the logic tree to explicitly account for epistemic uncertainty by considering alternative models (source models, maximum magnitude in hazard computations, and ground-motion attenuation relationships). The hazard maps have been produced for horizontal ground motion at bedrock level (Shear wave velocity ≥ 3.6 km/s) and compared with the earlier studies like Bhatia et al., 1999 (India and adjoining areas); Seeber et al, 1999 (Maharashtra state); Jaiswal and Sinha, 2007 (Peninsular India); Sitharam and Vipin, 2011 (South India); Menon et al., 2010 (Tamilnadu). It was observed that the seismic hazard is moderate in Peninsular shield (except the Kutch region of Gujarat), but the hazard in the North and Northeast India and Andaman-Nicobar region is very high. The ground motion predicted from the present study will not only give hazard values for design of structures, but also will help in deciding the locations of important structures such as nuclear power plants. The evaluation of surface level PGA values is of very high importance in the engineering design. The surface level PGA values were evaluated for the entire study area for four NEHRP site classes using appropriate amplification factors. If the site class at any location in the study area is known, then the ground level PGA values can be obtained from the respective map. In the absence of VS30 values, the site classes can be identified based on local geological conditions. Thus this method provides a simplified methodology for evaluating the surface level PGA values. The evaluation of PGA values for different site classes were evaluated based on the PGA values obtained from the DSHA and PSHA. This thesis also presents VS30 characterization of entire country based on the topographic gradient using existing correlations. Further, surface level PGA contour map was developed based on the same. Liquefaction is the conversion of formally stable cohesionless soils to a fluid mass, due to increase in pore pressure and is prominent in areas that have groundwater near the surface and sandy soil. Soil liquefaction has been observed during the earthquakes because of the sudden dynamic earthquake load, which in turn increases the pore pressure. The evaluation of liquefaction potential involves evaluation of earthquake loading and evaluation of soil resistance to liquefaction. In the present work, the spatial variation of the SPT value required to prevent liquefaction has been estimated using a probabilistic methodology, for entire India. To summarize, the major contribution of this thesis are the development of region specific magnitude correlations suitable for Indian subcontinent and an updated homogeneous earthquake catalog for India that is uniform in moment magnitude scale. The delineation and characterization of regional seismic source zones for a vast country like India is a unique contribution, which requires reasonable observation and engineering judgement. Considering complex seismotectonic set up of the country, the present work employed numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instrument such as the logic tree to explicitly account for epistemic uncertainties considering alternative models (For Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization of India was done based on the topographic gradient, as a first level approach, which facilitated the development of surface level PGA map for entire country using appropriate amplification factors. Above factors make the present work very unique and comprehensive touching various aspects of seismic hazard. It is hoped that the methodology and outcomes presented in this thesis will be beneficial to practicing engineers and researchers working in the area of seismology and geotechnical engineering in particular and to the society as a whole.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG25653en_US
dc.subjectEarthquake Resistant Structures - Indiaen_US
dc.subjectSeismologyen_US
dc.subjectSeismic Hazard Analysis - Indiaen_US
dc.subjectEarthquake Data Processingen_US
dc.subjectSeismicity Analysisen_US
dc.subjectRegional Seismic Source Zonesen_US
dc.subjectProbabilistic Seismic Hazard Analysisen_US
dc.subjectLiquefaction Analysisen_US
dc.subjectSeismic Hazard Assessmenten_US
dc.subjectSeismic Hazard Macrozonationen_US
dc.subjectSeismicity in Indiaen_US
dc.subjectSeismic Hazard in Indiaen_US
dc.subjectSeismic Hazard Indiaen_US
dc.subject.classificationCivil Engineeringen_US
dc.titleComprehensive Seismic Hazard Analysis of Indiaen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Engineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record