Show simple item record

dc.contributor.advisorRamasesha, S
dc.contributor.authorGoli, V M L Durga Prasad
dc.date.accessioned2018-01-28T10:23:07Z
dc.date.accessioned2018-07-30T14:47:22Z
dc.date.available2018-01-28T10:23:07Z
dc.date.available2018-07-30T14:47:22Z
dc.date.issued2018-01-28
dc.date.submitted2014
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/3030
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/3894/G26784-Abs.pdfen_US
dc.description.abstractIn this thesis, we investigate the entanglement and magnetic properties of frustrated spin systems and correlated electronic properties of conjugated carbon systems. In chapter 1, we present different approaches to solve the time-independent, nonrelativistic Schr¨odinger equation for a many-body system. We start with the full non-relativistic Hamiltonian of a multi nuclear system to describe the Born - Oppenheimer approximation which allows the study of electronic Hamiltonian which treats nuclear positions parametrically. We then also describe ab initio techniques such as the Hartree-Fock Method and density functional theories. We then introduce model Hamiltonians for strongly correlated systems such as the Hubbard, Pariser-Parr-Pople and Heisenberg models, and show how they result from the noninteracting one-band tight-binding model. In chapter 2, we discuss various numerical techniques like the exact diagonalization methods and density matrix renormalization group (DMRG) method. We also discuss quantum entanglement and the success of DMRG which can be attributed to the area law of entanglement entropy. In chapter 3, we study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions and dimerization (d ). Frustration arises for specific relative signs of the interactions J1 and J2. In particular, we analyze the behavior of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J2−d plane. All the calculations in this work are based on exact diagonalizations of finite systems. In chapter 4, we study Heisenberg spin-1/2 and spin-1 chains with alternating ferromagnetic (JF 1 ) and antiferromagnetic (JA 1 ) nearest-neighbor interactions and a ferromagnetic next-nearest-neighbor interaction (JF 2 ). In this model frustration is present due to non-zero JF 2 . The model with site spin s behaves like a Haldane spin chain with site spin 2s in the limit of vanishing JF 2 and large JF 1 /JA 1 . We show that the exact ground state of the model can be found along a line in the parameter space. For fixed JF 1 , the phase diagram in the space of JA 1 −JF 2 is determined using numerical techniques complemented by analytical calculations. A number of quantities, including the structure factor, energy gap, entanglement entropy and zero temperature magnetization, are studied to understand the complete phase diagram. An interesting and potentially important feature of this model is that it can exhibit a macroscopic magnetization jump in the presence of a magnetic field; we study this using an effective Hamiltonian. In chapter 5, we study correlated electronic properties of zigzag and armchair fused naphthalenes and polyperylene systems in the presence of long-range electronelectron interactions. We find that the ground state of zigzag fused naphthalene system is a higher spin state, while the ground state of armchair fused naphthalene is a singlet. The spin gap of polyperylene is unusually small and the ground state is a singlet. Our calculations of optical gap and two-photon gap suggest that polyperylene should exhibit fluorescence. From the charge gap calculation, we predict that in zigzag fused naphthalene and polyperylene systems, excitons are weakly binding. Peierls type of distortion is negligible in zigzag fused naphthalene and polyperylene systems, however, in armchair fused naphthalene system, interior bonds have tendency to distort in low-lying excited states. In chapter 6, we study the ground state spin of the Heisenberg spin-1/2 nearestneighboring antiferromagnetic exchange models of systems with fused odd member rings. In particular, we compute the ground state spin of fused three and five membered rings as well as fused five membered rings. In the thermodynamic limit, the ground state of the fused three and five membered system is a higher spin state, while fused five membered system shows a singlet ground state, for all system sizes.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG26784en_US
dc.subjectElectrochemistryen_US
dc.subjectFrustuated Spin Chainsen_US
dc.subjectCarbon Electrochemistryen_US
dc.subjectConjugated Carbon Systemsen_US
dc.subjectHeisenberg Spin Chainsen_US
dc.subjectDensity Matrix Renormalization Groupen_US
dc.subjectQuantum Many Body Systemsen_US
dc.subjectQuantum Entanglementen_US
dc.subjectHamiltonian Systemsen_US
dc.subjectGraphite Nanoribbonsen_US
dc.subject.classificationSolid State Chemistryen_US
dc.titleStudies on Frustrated Spin Chains and Quasi-One-Dimensional Conjugated Carbon Systemsen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record