Show simple item record

dc.contributor.advisorThangavelu, S
dc.contributor.authorKumar, Manish
dc.date.accessioned2018-01-01T06:23:21Z
dc.date.accessioned2018-07-31T06:09:11Z
dc.date.available2018-01-01T06:23:21Z
dc.date.available2018-07-31T06:09:11Z
dc.date.issued2018-01-01
dc.date.submitted2016
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/2937
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/3799/G27800-Abs.pdfen_US
dc.description.abstractWe start with the recollection of basic results about differential manifolds and Lie groups. We also recall some preliminary terminologies in Lie algebra. Then we define the Lie algebra corresponding to a Lie group. In the next section, we define a strongly continuous representation of a Lie group on a Banach space. We further define the smooth, analytic and entire vectors for a given representation. Then, we move on to develop some necessary and sufficient criteria to characterize smooth, analytic and entire vectors. We, in particular, take into account of some specific representations of Lie groups like the regular representation of R, the irreducible representations of Heisenberg groups, the irreducible representations of the group of Affine transformations and finally the representations of non-compact simple Lie groups.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG27800en_US
dc.subjectLie Groupsen_US
dc.subjectVectorsen_US
dc.subjectComplex Numberen_US
dc.subjectHeisenberg Groupen_US
dc.subjectBanach Spaceen_US
dc.subjectLie Algebraen_US
dc.subject.classificationMathematicsen_US
dc.titleAnalytic and Entire Vectors for Representations of Lie Groupsen_US
dc.typeThesisen_US
dc.degree.nameMSen_US
dc.degree.levelMastersen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record