dc.contributor.advisor | Govardhan, Raghuraman N | |
dc.contributor.author | Bhat, Shantanu | |
dc.date.accessioned | 2015-07-08T09:26:36Z | |
dc.date.accessioned | 2018-07-31T05:46:49Z | |
dc.date.available | 2015-07-08T09:26:36Z | |
dc.date.available | 2018-07-31T05:46:49Z | |
dc.date.issued | 2015-07-08 | |
dc.date.submitted | 2012 | |
dc.identifier.uri | https://etd.iisc.ac.in/handle/2005/2443 | |
dc.identifier.abstract | http://etd.iisc.ac.in/static/etd/abstracts/3154/G25314-Abs.pdf | en_US |
dc.description.abstract | Highly-loaded turbomachine blades can stall under off-design conditions. In this regime, the flow can separate close to the leading edge of the blade in a periodic manner that can lead to blade vibrations, commonly referred to as stall flutter. Prior experimental studies on stall flutter have been at large Re (Re ~ 106). In the present work, motivated by applications in Unmanned Air Vehicles (UAV) and Micro Air Vehicles (MAV), we study experimentally the forces and flow fields around an oscillating blade at low Re (Re ~ 3 x 104). At these low Re, the flow even over the stationary blade can be quite different.
We experimentally study the propensity of an isolated symmetric and cambered blade (with chord c) to undergo self-excited oscillations at high angles of attack and at low Reynolds numbers (Re ~ 30, 000). We force the blade, placed at large mean angle of attack, to undergo small amplitude pitch oscillations and measure the unsteady loads on the blade. From the measured loads, the direction and magnitude of energy transfer to/from the blade is calculated. Systematic measurements have been made for varying mean blade incidence angles and for different excitation amplitudes and frequencies (f). These measurements indicate that post stall there is a possibility of excitation of the blade over a range of Strouhal Numbers (St = fc/U) with the magnitude of the exciting energy varying with amplitude, frequency and mean incidence angles. In particular, the curves for the magnitude of the exciting energy against Strouhal number (St) are found to shift to higher St values as the mean angle of attack is increased. We perform the same set of experiments on two different blade shapes, namely NACA 0012 and a compressor blade profile, SC10. Both blade profiles show qualitatively similar phenomena.
The flow around both the stationary and oscillating blades is studied through Particle Image Velocimetry (PIV). PIV measurements on the stationary blade show the gradual shift of the flow separation point towards the leading edge with increasing angle of attack, which occurs at these low Re. From PIV measurements on an oscillating blade near stall, we present the flow field around the blade at different phases of the blade oscillation. These show that the boundary layer separates from the leading edge forming a shear layer, which flaps with respect to the blade. As the Strouhal number is varied, the phase between the flapping shear layer and the blade appears to change. This is likely to be the reason for the observed change in the sign of the energy transfer between the flow and the blade that is responsible for stall flutter. | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | G25314 | en_US |
dc.subject | Flutter (Aerodynamics) | en_US |
dc.subject | Vibrations (Aeronautics) | en_US |
dc.subject | Oscillating Wings (Aerodynamics) | en_US |
dc.subject | Stall Flutter | en_US |
dc.subject | Oscillating Blades | en_US |
dc.subject | Stationary Blades | en_US |
dc.subject | Turbomachines - Blades - Flutter | en_US |
dc.subject | Isolated Blades - Stall Flutter | en_US |
dc.subject | Blade Vibrations | en_US |
dc.subject | Low Reynolds Numbers | en_US |
dc.subject | Oscillating Blades - Stall Flutter | en_US |
dc.subject | Oscillating Blade | en_US |
dc.subject | Particle Image Velocimetry (PIV) | en_US |
dc.subject | Blade Oscillation | en_US |
dc.subject.classification | Aerodynamics | en_US |
dc.title | Study Of Stall Flutter Of An Isolated Blade In A Low Reynolds Number Incompressible Flow | en_US |
dc.type | Thesis | en_US |
dc.degree.name | MSc Engg | en_US |
dc.degree.level | Masters | en_US |
dc.degree.discipline | Faculty of Engineering | en_US |