Methods for Blind Separation of Co-Channel BPSK Signals Arriving at an Antenna Array and Their Performance Analysis
Abstract
Capacity improvement of Wireless Communication Systems is a very important area of current research. The goal is to increase the number of users supported by the system per unit bandwidth allotted. One important way of achieving this improvement is to use multiple antennas backed by intelligent signal processing. In this thesis, we present methods for blind separation of co-channel BPSK signals arriving at an antenna array. These methods consist of two parts, Constellation Estimation and Assignment. We give two methods for constellation estimation, the Smallest Distance Clustering and the Maximum Likelihood Estimation. While the latter is theoretically sound,the former is Computationally simple and intuitively appealing. We show that the Maximum Likelihood Constellation Estimation is well approximated by the Smallest Distance Clustering Algorithm at high SNR. The Assignment Algorithm exploits the structure of the BPSK signals. We observe that both the methods for estimating the constellation vectors perform very well at high SNR and nearly attain Cramer-Rao bounds. Using this fact and noting that the Assignment Algorithm causes negligble error at high SNR, we derive an upper bound on the probability of bit error for the above methods at high SNR. This upper bound falls very rapidly with increasing SNR, showing that our constellation estimation-assignment approach is very efficient. Simulation results are given to demonstrate the usefulness of the bounds.