Show simple item record

dc.contributor.advisorGupta, G S
dc.contributor.authorMullay, Neelam Kaur
dc.date.accessioned2011-02-09T10:10:58Z
dc.date.accessioned2018-07-31T05:54:53Z
dc.date.available2011-02-09T10:10:58Z
dc.date.available2018-07-31T05:54:53Z
dc.date.issued2011-02-09
dc.date.submitted2008
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/1057
dc.description.abstractGas, liquid and powder flow in the lower part of a blast furnace is complex phenomena. In order to understand the aerodynamics of the blast furnace properly, these phenomena must be included in their advanced form. Previous studies have shown that the conditions of blast furnace resemble the cold model experiments which have been done in decreasing gas velocities. Also, the recent studies have shown that liquid flow in a blast furnace can be represented more realistically considering it discrete in nature. In the current study, both the phenomena have been considered along with the injection of powder through a nozzle while studying the fluid flow behaviour in a packed bed. The situation resembles the lower part of an ironmaking blast furnace. In this study, gas flow has been modelled using k-ε turbulent model and has been coupled with previously developed stress model to calculate the raceway size. Coal powder is treated as continuum and has been modelled in the similar way as gas flow. After this gas and powder flow model were coupled with previously developed discrete liquid flow model. Liquid flow model has been considered for structured bed only. The governing equations for gas phase were discretized. Finite Volume method was used for the solution. Co-located grid is used for the simulation. Blending of upwind difference scheme and central difference scheme (deferred correction approach) is used to achieve the stability of upwind scheme and accuracy of central difference scheme. Similar treatment was employed for powder phase. For the solution of volume fraction of powder, powder phase continuity equation was used along with pseudo time step scheme. Results obtained from gas and powder models have been validated against published experimental data. Similarly, gas-liquid flow results have been validated against published experimental data on gas-powder flow. Results obtained by gas-powder-liquid model could not be validated against any experimental or theoretical data as they are not available in the literature. The effect of various parameters on the fluid flow (gas/liquid/powder) behaviour have been studied like the effect of increasing and decreasing gas velocities, flow rates of liquid, gas and powder, size of powder and packing etc. It is found that the above mentioned phenomena have significant effect on the fluid flow behaviour in a packed bed.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG23460en_US
dc.subjectGas Dynamicsen_US
dc.subjectFluid Dynamicsen_US
dc.subjectPulverized Coal Injectionen_US
dc.subjectBlast Furnaceen_US
dc.subjectGas-Powder-Liquid Flowen_US
dc.subjectLiquid Flowen_US
dc.subjectGas-Powder Flowen_US
dc.subjectGas-Liquid Flow - Modellingen_US
dc.subjectRaceway Hysteresisen_US
dc.subjectGas Flowen_US
dc.subjectFluid Flowen_US
dc.subjectRaceway Zoneen_US
dc.subject.classificationApplied Mechanicsen_US
dc.titleStudy Of Gas-Liquid Flow Behaviour In Raceway Zone Under Pulverised Coal Injectionen_US
dc.typeThesisen_US
dc.degree.nameMSc Enggen_US
dc.degree.levelMastersen_US
dc.degree.disciplineFaculty of Engineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record