Show simple item record

dc.contributor.advisorSaini, Deepak K
dc.contributor.authorAgrawal, Ruchi
dc.date.accessioned2018-05-23T08:13:25Z
dc.date.accessioned2018-07-30T14:34:27Z
dc.date.available2018-05-23T08:13:25Z
dc.date.available2018-07-30T14:34:27Z
dc.date.issued2018-05-23
dc.date.submitted2015
dc.identifier.urihttp://etd.iisc.ac.in/handle/2005/3591
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/4460/G27330-Abs.pdfen_US
dc.description.abstractMycobacterium tuberculosis, the causative organism of the disease tuberculosis (TB) in humans, leads to nearly two million deaths each year. This versatile pathogen can exist in highly distinct physiological states such as asymptomatic latent TB infection where bacilli lie dormant or as active TB disease in which the bacilli replicate in macrophages. The pathogenic lifestyle requires the tubercle bacillus to sense and respond to multiple environmental cues to ensure its survival. Such stimuli include hypoxia, nutrient limitation, presence of reactive oxygen and reactive nitrogen intermediates, pH alterations, and cell wall/ membrane stress. Two component systems (TCSs) form the primary apparatus for sensing and responding to environmental cues in bacteria. A prototypical TCS is composed of a sensory protein called sensor kinase (SK) and a response generating protein called response regulator (RR). M. tuberculosis encodes 11 genetically paired TCSs, 2 orphan sensor kinases and six orphan response regulator proteins. Studies of the TB bacilli using transcriptional profiling and gene knockouts have revealed that TCSs play an important role in facilitating successful adaptation to diverse environmental conditions encountered within the host. The mtrAB and prrAB genes encoding corresponding TCSs have been shown to be essential for survival, mprAB for persistence and devRS for hypoxic adaptation. Further, inactivation of the TCSs regX3-senX3, tcrXY, trcRS, phoPR or kdpDE was shown to affect the growth and/or virulence of M. tuberculosis in animal infection models. The SK and RR proteins of TCSs are modular and contain variable input and output domains coupled to conserved ‘transmitter’ and ‘receiver’ domains. Despite the modular nature and extensive homology of SK and RR proteins across TCSs, which may allow non-cognate interactions, it is believed that crosstalk across different TCSs is not favored and that individual pathways are generally well insulated. The existing profiling studies have been performed on the TCSs of bacterial species containing a relatively large number of TCSs. In those studies, specificity and insulation have been the norm and thus become the prevalent paradigm of TCS signaling. In vitro genome wide phosphotransfer profiling has revealed only a few cross- communication nodes in the TCSs of Escherichia coli (~3%), while none in Caulobacter crescentus (in 352 interactions tested, in short time duration) and Myxococcus xanthus (in 250 interactions tested). Yet, many instances of cross talk have been reported in literature. For example, E. coli TCSs PmrAB and EnvZ-OmpR show cross-communication with QseBC and ArcBA, and many more. In M. tuberculosis, indirect evidence of the existence of such cross regulation has originated from studies where mutations in phoPR have been shown to affect the expression of the TCS devRS and its regulon. It is thus interesting to examine the extent of crosstalk in the TCSs of M. tuberculosis, which has an exceptionally small number of TCS proteins compared to E. coli. As mentioned earlier, M. tuberculosis H37Rv has 11 cognate pairs of TCSs, 2 orphan sensor kinases and 6 orphan response regulators. To study the entire landscape, we aimed to study all 221 connections between SK and RR proteins including 12 cognate interactions. While 10 of the cognate TCS interactions were established in the literature, two putative systems KdpDE and NarSL and 5 orphan response regulators were still uncharacterized, therefore we initiated our work with the characterization of these TCSs. At the biochemical level, the KdpDE two component system of M. tuberculosis is not well studied, though one report showed interaction of the C-terminal domain of KdpD SK and KdpE RR using yeast two hybrid assay and another reported the interaction of the SK with LRP protein. Besides these associations, there is no evidence for the functionality of KdpDE system. Similarly, NarSL system also has not been characterized and it not known whether these putative two component proteins are functional. The initial part of the study includes the characterization of these two TCSs, NarS-NarL and KdpD-KdpE, at biochemical and physiological levels. In our studies we demonstrated that KdpDE system is a bonafide two component system of M. tuberculosis, and KdpD SK undergoes autophosphorylation at His642 residue in presence of Mg+2 ions and then it transfers phosphoryl group to a conserved Asp52 residue on the KdpE RR protein. The acid-base stability analysis revealed the nature of chemical bonds present in the KdpD and KdpE proteins, and further confirmed that KdpD and KdpE are typical SK and RR respectively. SPR analysis demonstrated that KdpD and KdpE proteins interact under basal non-phosphorylated conditions and the interaction affinity reduced when SK was phosphorylated. The reduction in the interaction affinity indicated towards a possible dissociation of SK and RR protein during phosphotransfer, which allows RRs to exert their regulatory effect. On the similar line, the phosphorylation defective SK (KdpDH642Q) had least affinity with KdpE suggesting that perhaps this mutant SK, fails to interact with the RR. We have also shown that both the kdpD and kdpE genes are in the same operon and are up regulated in potassium ions limitation and osmotic stress conditions. Overall, using the biochemical approaches, we have established that Rv1027c–Rv1028c operon of M. tuberculosis encodes a functional and a typical KdpDE two component signal transduction system. Using the similar biochemical and biophysical approaches, we have demonstrated that NarS-NarL proteins constitute a functional TCS and His241 and Asp61 are the phosphorylatable residues. In contrast to KdpDE which shows typical behaviour of TCS, NarSL TCS showed atypical behaviour. Malhotra and group’s work on NarSL suggested that there is cross-regulation between NarS/NarL and DevS/DosT/DevR systems. We addressed this possibility on three separate levels, by examining (i) the cross-phosphorylation of DevR and NarL RRs by non-cognate sensor kinases NarS and DevS/DosT respectively, (ii) the interaction between DevR and NarL RR proteins, and (iii) examining the effect of DevR-NarL interactions on their DNA binding properties. Our studies ruled out the presence of any physiologically relevant phosphorylation mediated cross-talk between NarS/NarL and DevS/DosT/DevR. We identified that the cross talk between these TCSs could be explained on the basis of interaction between NarL and DevR RRs and their subsequent binding to the target gene promoter regions for concerted regulation of gene expression. We also identified that DevR activation is critical for cooperative action with NarL. This process comes out as a novel mechanism of gene regulation via heteromerization of RRs. We hypothesized that formation of NarL-DevR heteromers may arise because of high sequence similarities. Conclusively, our study provides insights into the functionality of M. tuberculosis NarL/NarS TCS and regulatory function of NarL protein which acts in concert with another RR, DevR. Overall, NarS-NarL system showed an atypical, novel mode of gene regulation involving RR heteromerization. Subsequent to the basic biochemical characterization of NarSL and KdpDE system, the genome wide phosphotransfer profiling was done to identify the cross-connections between TCSs. Remarkably, we found that specificity was the exception rather than the rule. While only three of the TCS pairs were completely specific, all the other nine TCS pairs exhibited crosstalk, including a few that were highly promiscuous. We classified the interactions as specific, one-to-many, and many-to-one signaling circuits. We also profiled all the RRs including the orphans for their ability to accept phosphoryl group from a low molecular weight donor, acetyl phosphate, and interestingly found that only two RRs DevR and NarL were capable of accepting phosphoryl group from such a donor. Interestingly, none of the orphan RRs accepted phosphoryl group from any donor, neither SKs nor low molecular weight phospho donors, warranting further analysis of their roles and presence in the M. tuberculosis genome. Our exhaustive map of the crosstalk between the TCSs of M. tuberculosis sets the stage for a renewed view of TCS signaling and proposes a dispersive-integrative landscape for TCS signaling rather than one of insulation. As an extension of our basic characterization work of NarSL TCS, we also attempted to understand the localization pattern of NarS sensor kinase in M. smegmatis cells using fluorescence approaches. It is known that many bacterial receptors including sensor kinases form clusters or show specific localization patterns inside the cell. We found that NarS shows distinct cellular localization pattern. However, the functional significance of this localization pattern is not obvious yet and warrants further investigations. We also developed a few non-radioactive methods to study interaction between two component systems to overcome the limitations associated with radioactive experiments in studying TCSs. We developed fluorescence resonance energy transfer (FRET) to study in vitro interaction between two component proteins which was sensitive to the phosphorylation status of the proteins. Using fluorescently tagged SKs and RRs, we determined a change in FRET for KdpDE and NarSL TCS pairs in vitro. Our study thus also provides an alternative approach to study TCS signaling, using an easier, non-radioactive and high throughput approach. In summary, our study presents the evidence of an alternative paradigm of bacterial signaling, where significant crosstalk between the underlying TCSs prevails. The new paradigm is expected to have important implications in our understanding of the virulence and pathogenesis of bacterial infections. Overall, our studies (i) allowed the establishment of functionality of all paired TCSs encoded in the genome of M. tuberculosis including NarSL and KdpDE TCSs, (ii) identified the novel mechanism of gene regulation by NarL RR and DevR, (iii) demonstrated the existence of TCS signaling which is contrary to the existing notion of specificity (iv) showed the distinct localization pattern of NarS and (v) developed non-radioactive approaches to study two component interactions.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG27330en_US
dc.subjectMycobacterium tuberculosisen_US
dc.subjectTwo Component Signaling Networksen_US
dc.subjectBacterial Two Component Signaling Systemsen_US
dc.subjectSensor Histidine Kinaseen_US
dc.subjectResponse Regulatoren_US
dc.subjectMycobacterium tuberculosis Two Component Systemsen_US
dc.subjectTwo Component System Proteinsen_US
dc.subjectTwo Component Signal Transductionen_US
dc.subjectNarS Sensor Kinaseen_US
dc.subjectTwo-Component Signaling Systemsen_US
dc.subjectTwo-Component Systemsen_US
dc.subject.classificationMolecular Biologyen_US
dc.titleSystemic Profiling of Two Component Signaling Networks in Mycobacterium Tuberculosisen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record