Show simple item record

dc.contributor.advisorVijayraghavan, Usha
dc.contributor.authorLhaineikim, Grace
dc.date.accessioned2017-12-02T16:25:37Z
dc.date.accessioned2018-07-30T14:23:27Z
dc.date.available2017-12-02T16:25:37Z
dc.date.available2018-07-30T14:23:27Z
dc.date.issued2017-12-02
dc.date.submitted2016
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/2853
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/3707/G27868-Abs.pdfen_US
dc.description.abstractRice have highly derived florets borne on a short branch called ‘spikelet’ comprised of a pair of rudimentary glumes and sterile lemma (empty glumes) that subtends a single fertile floret. The floral organs consist of a pair of lodicules, six stamens and a central carpel that are enclosed by a pair of bract-like organs, called lemma and palea. A progressive reprogramming of meristem identity during the floral development of flowers, on branches on the inflorescence, is correlated with changes in transcriptional status of regulatory genes that execute cascades of distinct developmental events. On the other hand phytohormones such as auxin and cytokinin that are critical in predetermining the sites of new organ primordia emergence and in maintaining the size or populations of meristems. Molecular genetic analyses of mutants have expanded the repository of genes regulating floral organ specification and identity, yet the finer mechanistic details on process downstream to these regulatory genes and co-ordination with phytohormone signalling pathways needs further investigation. One aim of the study presented in this thesis is to develop a tool that would display of spatial description of dynamic auxin or cytokinin accumulation in developing rice inflorescence and floral meristems and to evaluate auxin distribution defects of OsMADS1-RNAi florets using this tool. Additionally, we aim to understand the regulatory effects on OsMADS1 on candidate floral organ and meristem fate determining genes during two temporal phases of flower development to decipher other regulatory cascades controlled by OsMADS1. Spatial distribution profile of phytohormones in young and developing meristems of rice Cytokinin promotes meristem activity (Su et al., 2011) while auxin accumulation, directed by auxin efflux transport PIN proteins predicts sites of new organ initiation (Reinhardt et al., 2003; van Mourik et al., 2012). Previous studies in the lab deciphered that OsMADS1 exerts positive regulatory effects on genes in auxin pathways and repressive effects on cytokinin signaling and biosynthetic genes (Khanday et al., 2013). Thus, the need for a reliable system to understand auxin and cytokinin activity in live inflorescence and floral meristems of rice motivated us to raise promoter: reporter tools to map the spatial and temporal phytohormone distribution. Confocal live imaging conditions in primary roots of IR4DR-GFP and DR5-CyPet lines was performed and responsiveness of the DR5 elements to auxin was authenticated. Auxin maxima were distinctly seen in the epidermal and sub-epidermal cells of inflorescence branch primordia anlagen and apices of newly emerged branch primordia. As floral organs were being initiated, on the floret meristem, we discerned the sequential appearance of auxin accumulation at sites of organ primordia while apices of early floral meristems (FM) showed low auxin content. We clearly detect canalization of auxin streams marking regions of vascular inception. Using this live imaging system we probed auxin patterns and levels in malformed and indeterminate OsMADS1-RNAi florets and we observed a significant reduction in the levels of auxin. Two oppositely positioned peaks of auxin were noted in the persistent FM of OsMADS1-RNAi florets, a pattern similar to auxin dynamics at sites of rudimentary glume primordia on the wild-type (WT) spikelet meristem. These studies were followed up with immunohistochemistry (IHC) on fixed tissues for “PIN” transport proteins that suggest PIN convergence towards organ initiation sites, regions where auxin accumulation was clearly visualized by the IR4DR5-GFP and DR5-CyPet reporters. IHC experiments that detected GFP, in fixed tissues of TCSn-mGFP ER (WT) and TCSn-mGFP ER;OsMADS1-RNAi (OsMADS1-RNAi) inflorescence and florets showed an ectopic increase in the domain of cells with cytokinin response in OsMADS1-RNAi florets, compared to that of WT. Intriguingly, cytokinin responsive cells persisted in the central FM of OsMADS1-RNAi florets that might partially account for some of the FM indeterminacy defects seen in these florets. A correlative observation of these different imaging data hint at some exclusive patterns of the IR4DR5/DR5 and TCSn reporters that in turn lead us to speculate that a cross talk between auxin and cytokinin distribution may contribute to the precise phyllotaxy of lateral organs in rice inflorescence. Studies on novel targets of OsMADS1 in floral organ identity and meristem determinacy Loss of OsMADS1 function results in rice florets with miss specified floral organs and an indeterminate carpel produces new abnormal florets. Despite having several mutants in OsMADS1, mechanisms of how OsMADS1 regulates meristem maintenance and termination is not well understood. Global expression profile in OsMADS1-RNAi vs. WT tissues encompassing a wide range of developing florets (0.2 to 2cm panicles), gave an overview of OsMADS1 functions in many aspects of floret development. Here, a gene-targeted knockout of OsMADS1 named - osmads1ko (generated in a collaborative study) was characterized and found to display extreme defects in floral organs and an indeterminate FM. Strikingly, in addition to loss of determinacy, FM reverts to a prior developmental fate of inflorescence on whose new rachis are leaf-like malformed florets. We suggest these phenotypes reflect the null phenotype of OsMADS1 and its role in meristem fate maintenance. We tested gene expression levels for some proven targets of OsMADS1 (Khanday et al., 2013) and utilized panicles in two developmental phases- young early FMs (panicles of 0.2 to 0.5 cm) and older florets with organ differentiation (panicles of 0.5 to 1cm). We observed temporally different effects on the regulation of OsMADS34 that together with histology of young osmads1ko inflorescences suggest that the mutant is impeded for spikelet to floral meristem transition. In addition, OsMADS1 had a positive regulatory effect on genes implicated for lemma and palea organ identity such as OsIDS1, OsDH1, OsYABBY1, OsMADS15, OsMADS32, OsDP1 and OsSPL16 in both young and old panicles while OsIG1 was negatively regulated in both phases of development. MADS-box genes important for carpel and ovule development - OsMADS13 and OsMADS58 were had significantly reduced expression in florets undergoing organ differentiation. OsMADS1 positively regulated several other non MADS-box developmental genes - OsSPT, OsHEC2 and OsULT1, whose Arabidopsis homologs control carpel development and FM determinacy. These genes are de-regulated in later stages of osmads1ko floret development and are unaffected in younger panicles. Finally, OsMADS1 continually activated meristem maintenance genes - OsBAM2-like and OsMADS6 while the activation of OSH1 in early floral meristems was later altered to a repressive effect in developing florets. Perhaps such dynamic temporal effects on meristem genes are instrumental in the timely termination of the floral meristem after floral organ differentiation. More importantly, we show that regulation of many of these genes is directly affected by OsMADS1, through our studies on expression levels before and after chemical induction of OsMADS1-GR protein in amiRNAOsMADS1 florets. Further, some key downstream targets were re-affirmed by studying expression status in transgenic lines, with the OsMADS1-EAR repressive protein variant. These results provide new insights into the developmentally phased roles of OsMADS1 on floral meristem regulators and determinants of organ identity to form a determinate rice floret. Gene networks regulated by OsMADS1 during early flower development To identify global targets in early floret meristems, we determined the differential RNA transcriptome in osmads1ko tissues as compared to wild-type tissues. These data revealed regulators of inflorescence architecture, floral organ identity including MADS-box floral homeotic factors, factors for meristem maintenance, auxin response, transport and biosynthesis as some of the important functional classes amongst the 2725 differentially expressed genes (DEGs). Integrating DEGs with OsMADS1 ChIP-seq data (prior studies from our lab) we deciphered direct vs. indirect and positive vs. negatively regulated targets of OsMADS1. These datasets reveal an enrichment for functional categories such as metabolic processes, signaling, RNA transcription and processing, hormone metabolism and protein modification. Using Bio-Tapestry plot as a tool we present a visualization of a floral stage-specific regulatory network for genes with likely functional roles in meristem specification and in organ development. Further, to examine if indirect targets regulated by OsMADS1 could be mediated through transcription factors (that are themselves direct targets), we constructed a small network with the transcription factors OSH1, OSH15 and OsYABBY1 as key nodal genes and we predicted their downstream effects. Taken together, these analyses provide examples of the complex networks that OsMADS1 controls during the process of rice floret development. In summary, we surmise that defect in phytohormone distribution in OsMADS1 knockdown florets results in irregular patterns of lateral organ primordia emergence. In addition, the derangements in the developmentally stage specific expression of floral meristems identity and organ identity genes culminates in miss-specified and irregularly patterned abnormal organs in Osmads1 florets. Thus, our study highlights the versatility of OsMADS1 in regulating components of hormone signaling and response, and its effects on various floral development regulators results in the formation of a single determinate floret on the spikelet. References: Khanday I, Yadav S.R, and Vijayraghavan U. (2013). Plant Physiol 161, 1970–1983. van Mourik S , Kaufmann K, van Dijk AD, Angenent G.C, Merks R.M.H, Molenaar J. (2012). PLOS One 1, e28762 Reinhardt D, Pesce E, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J and Kuhlemeier C. (2003). Nature 426, 255-260 Su Y, Liu Y and Zhang X. (2011) Mol Plant 4, 616–625en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG27868en_US
dc.subjectRice Meristemen_US
dc.subjectHoret Meristem Determinacyen_US
dc.subjectOsMADS1en_US
dc.subjectSpikeleten_US
dc.subjectMeristems of Riceen_US
dc.subjectOsMADS1-RNAi Floretsen_US
dc.subjectMeristem Determinacyen_US
dc.subjectPhytochromosomes Distributionen_US
dc.subjectFloral Meristem Developmenten_US
dc.subject.classificationCell Biologyen_US
dc.titleDelineating the Role of OsMADS1 in Auxin Distribution, Floret Identity and Floret Meristem Determinacyen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record