Show simple item record

dc.contributor.advisorRajanna, K
dc.contributor.authorAnuradha, S
dc.date.accessioned2009-09-22T04:33:16Z
dc.date.accessioned2018-07-31T06:03:48Z
dc.date.available2009-09-22T04:33:16Z
dc.date.available2018-07-31T06:03:48Z
dc.date.issued2009-09-22T04:33:16Z
dc.date.submitted2007
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/623
dc.description.abstractToday there is a great deal of interest in the development of gas sensors for applications like air pollution monitoring, indoor environment control, detection of harmful gases in mines etc. Based on different sensing principles, a large variety of sensors such as semiconductor gas sensors, thermoelectric gas sensors, optical sensors and thermal conductivity sensors have been developed. The present thesis reports a detailed account of a novel method followed for the design and development of a thermoelectric gas sensor for sensing of Volatile Organic Compounds. Thermoelectric effect is one of the highly reliable and important working principles that is widely being put into practical applications. The thermoelectric property of semiconducting tin oxide film has been utilized in the sensor that has been developed. The thermoelectric property of semiconducting tin oxide film has been utilized in the sensor. The deposition parameters for sputtering of tin oxide film have been optimized to obtain a high seebeck coefficient. A test set-up to characterize the deposited films for their thermoelectric property has been designed and developed. A novel method of increasing the seebeck coefficient of tin oxide films has been successfully implemented. Thin films of chromium, copper and silver were used for this purpose. Deposition of the semiconducting oxide on strips of metal films has led to a noticeable increase in the seebeck coefficient of the oxide film without significantly affecting its thermal conductivity. The next part of our work involved development of a gas sensor using this thermoelectric film. These sensors were further tested for their response to volatile organic compounds. The sensor showed significant sensitivity to the test gases at relatively low temperatures. In addition to this, the developed sensor is also selective to acetone gas.en
dc.language.isoen_USen
dc.relation.ispartofseriesG21074en
dc.subjectThermoelectric Gas Sensoren
dc.subjectGas Detectorsen
dc.subjectGas Sensorsen
dc.subjectGas Sensors - Fabricationen
dc.subjectThin Film Depositionen
dc.subjectTin Oxide Filmsen
dc.subjectTin Oxide Films - Depositionen
dc.subjectSemiconducting Metal Oxide Gas Sensors Theoryen
dc.subjectField Effect Transistor (FET)en
dc.subjectChemical Vapor Deposition (CVD)en
dc.subjectGas Sensingen
dc.subject.classificationInstrumentationen
dc.titleDevelopment Of A Tin Oxide Based Thermoelectric Gas Sensor For Volatile Organic Compoundsen
dc.typeThesisen
dc.degree.nameMSc Enggen
dc.degree.levelMastersen
dc.degree.disciplineFaculty of Engineeringen


Files in this item

This item appears in the following Collection(s)

Show simple item record