Show simple item record

dc.contributor.advisorHegde, Prasad
dc.contributor.authorSharma, Sipaz
dc.date.accessioned2022-05-12T11:16:44Z
dc.date.available2022-05-12T11:16:44Z
dc.date.submitted2021
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/5726
dc.description.abstractThe nature of the chiral phase transition in QCD with three massless flavors of quarks remains unresolved despite being studied for nearly four decades. This Ph.D. thesis is a study using Lattice QCD to determine the chiral phase transition temperature Tc, at which the spontaneously broken 3- flavor chiral symmetry is expected to restore. Four pion masses - highest being the physical pion mass of about 140 MeV - have been studied. Our analysis takes into account the temperature dependence of various chiral observables, such as 3- flavor chiral condensate and chiral susceptibility. A wide range of temperatures has been explored, starting in the vicinity of the chiral transition temperature to a much higher value. For a fixed quark mass, to take into account the finite size effects, different volumes are also generated and analysed. In the temperature and pion mass range explored, observables show drastic changes, hinting at a crossover. Finally, by employing universal finite size scaling techniques, it is found that the behaviour of chiral observables is consistent with 3-d O(2) universality class. Finite size scaling analysis is used to extract Tc values out of the data using two methods. First, by fi tting pseudocritical temperatures corresponding to different quark masses and volumes to the scaling expectation. Second, by constructing ratio H M=M, where H is the symmetry breaking field constructed using quark mass, M is the order parameter constructed from chiral condensate, and M is the susceptibility of the order parameter constructed from chiral susceptibility, and fi tting this ratio to the scaling expectation. From both the methods, within errors, we nd a temperature of about 100 MeV.en_US
dc.language.isoen_USen_US
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectquarksen_US
dc.subjectchiral phase transitionen_US
dc.subjectpion massesen_US
dc.subject.classificationResearch Subject Categories::NATURAL SCIENCES::Physics::Elementary particle physicsen_US
dc.titleChiral Phase Transition Temperature in 3-flavor QCDen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record