Show simple item record

dc.contributor.advisorRajanna, K
dc.contributor.advisorAsokan, S
dc.contributor.authorNuthalapati, Suresh
dc.date.accessioned2022-02-09T05:14:35Z
dc.date.available2022-02-09T05:14:35Z
dc.date.submitted2021
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/5620
dc.description.abstractIn recent years, device manufacturing technology has been shifted from bulk and thin-film materials to nanomaterials, which are emerged as a unique class of materials. Among all the two-dimensional (2D) nanomaterials, graphene, being first discovered, has been a trendsetter due to its exceptional properties and has shown a strong impact in developing various technologies. Sensor technology is the one, which provided remarkable scope for addressing enormous practical, real-time applications using graphene. The traditional sensors in the biomedical field have limitations such as rigid substrate, brittle in nature, complex process, and high cost. Hence new genre of sensors is always essential in the biomedical field. This present talk describes our work, synthesizing the graphene-palladium nanocomposite, investigating its sensing mechanism, and demonstrating its applications. In this work, chemically derived graphene derivative like reduced graphene oxide (rGO) was used to prepare nanocomposite with palladium nanoparticles (PdNPs). This presentation reports flexible and wearable sensors for health monitoring, loadcell, torque, and temperature measurement applications. Wearable sensors play a vital role in detecting and processing the health monitoring parameters like pulse and respiration. In recent years, various graphene and its nanocomposites-based flexible sensors with excellent performance were reported. However, most of them failed to balance crucial parameters like sensitivity, response time and sensing range, etc. The present work reports a novel strain sensor that exhibits high sensitivity, fast response, good sensing range, and high durability simultaneously. It also demonstrated potential real-time applications for detecting/sensing wrist pulse, respiration, other physical movements like finger and wrist bendings, etc. On the other hand, flexible strains sensors have not been utilized for loadcell and torque applications extensively. This talk presents the flexible strain sensors developed for these applications, illustrated high sensitivity and resolution when tested for loadcell and torque applications than many other inline sensors. Similarly, to the best of our knowledge, many graphene nanocomposites have not been found for designing temperature sensors with high sensitivity and tunable temperature coefficient of resistance (TCR). This work includes flexible temperature sensors; designed with various weight ratios of rGO and PdNPs to obtain high sensitivity and tunable TCR.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesIISc-2021-0167.R1;
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectFlexibleen_US
dc.subjectStrain
dc.subjectTemperature
dc.subjectWearable
dc.subjectTorque
dc.subjectGraphene
dc.subjectNanocomposite
dc.subject.classificationResearch Subject Categories::TECHNOLOGYen_US
dc.titleDevelopment of Graphene Palladium Nanocomposite based Flexible Sensors for Strain and Temperature Measurementen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineEngineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record