Show simple item record

dc.contributor.advisorAsokan, S
dc.contributor.authorSingha, Monoj Kumar
dc.date.accessioned2020-11-02T09:35:49Z
dc.date.available2020-11-02T09:35:49Z
dc.date.submitted2020
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/4648
dc.description.abstractZnO, band gap of ~3.37eV, is a chemical stable, biocompatiable, non-toxic n-type semiconductor material. Due to advancement of microfabrication technology and chemical synthesis method, nanostructured ZnO are found to be in different shapes and morphologies such as, nanorods, tetrapods, nanowires, nanoparticles, hollow sphere, nano/microflowers, nanocage, nanobelts, nanosheets, nanoflakes, thin films etc. Nanostructure of ZnO improves the sensors and devices sensitivity and detection limits due to its higher surface to volume ratio. Most of these nanostructures are synthesized by hydrothermal method which has limitations like fewer yields, required one seed layer to grow the different nanostructured thin film and finally this method cannot be implemented on large scale wafer. Other expensive equipment like sputtering, e-beam, thermal evaporation able to deposit large area but they are a unable to deposit nanostructured thin film .Only thin films are deposited using these systems. Therefore there is a need to develop a low cost method to deposit nanostructured thin films on large areas. We have used a homemade ultrasonic spray pyrolysis system to grow different ZnO nanostructured (microflower, thin films, nanorods, nanosheets,porous structures) thin films in a single deposition step on different substrates like glass, stainless steel mesh, polyamide, Si. Among all the structures there are very few literature available on microflower based sensors and devices. We have thus studied the microflower structured thin film on different substrates for different applications like UV detector, photocatalysis (methylene blue degradation) and SERS as dye, pesticides, explosives and biomolecule detections.en_US
dc.language.isoen_USen_US
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectZno, Nanostructured, UV detector, Photocatalysis, SERSen_US
dc.subject.classificationResearch Subject Categories::TECHNOLOGYen_US
dc.subject.classificationResearch Subject Categories::INTERDISCIPLINARY RESEARCH AREASen_US
dc.subject.classificationResearch Subject Categories::NATURAL SCIENCESen_US
dc.titleStudies on Single Step Deposition of ZnO Nanostructured Thin Films for Sensing and Photocatalysis Applicationen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineEngineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record