
Abstract

The finite element method (FEM) is a widely-used numerical tool in the fields of struc-

tural dynamics, acoustics and electromagnetics. In this work, our goal is to develop

robust FEM strategies for solving problems in the areas of acoustics, structures and

electromagnetics, and then extend these strategies to solve multi-physics problems such

as magnetohydrodynamics and structural acoustics. We now briefly describe the finite

element strategies developed in each of the above domains.

In the structural domain, we show that the trapezoidal rule, which is a special case of

the Newmark family of algorithms, conserves linear and angular momenta and energy in

the case of undamped linear elastodynamics problems, and an ‘energy-like measure’ in

the case of undamped acoustic problems. These conservation properties, thus, provide

a rational basis for using this algorithm. In linear elastodynamics variants of the trape-

zoidal rule that incorporate ‘high-frequency’ dissipation are often used, since the higher

frequencies, which are not approximated properly by the standard displacement-based

approach, often result in unphysical behavior. Instead of modifying the trapezoidal algo-

rithm, we propose using a hybrid FEM framework for constructing the stiffness matrix.

Hybrid finite elements, which are based on a two-field variational formulation involv-

ing displacement and stresses, are known to approximate the eigenvalues much more

accurately than the standard displacement-based approach, thereby either bypassing or

reducing the need for high-frequency dissipation. We show this by means of several

examples, where we compare the numerical solutions obtained using the displacement-

based and hybrid approaches against analytical solutions. We also present a monolithic

formulation for the solution of structural acoustic problems based on the hybrid finite
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element approach.

In the area of electromagnetics, since our goal is to ultimately couple the electromag-

netic analysis with structural or fluid variables in a ‘monolithic’ framework, we focus on

developing nodal finite elements rather than using ‘edge elements’. It is well-known that

conventional nodal finite elements can give rise to spurious solutions, and that they can-

not capture singularities when the domains are nonconvex and have sharp corners. The

commonly used remedies of either adding a penalty term or using a potential formulation

are unable to address these problems satisfactorily. In order to overcome this problem,

we first develop several mixed finite elements in two and three dimensions which pre-

dict the eigenfrequencies (including their multiplicities) accurately, even for non-convex

domains. In this proposed formulation, no ad-hoc terms are added as in the penalty for-

mulation, and the improvement is achieved purely by an appropriate choice of the finite

element spaces for the different variables. For inhomogeneous domains, ‘double noding’

is used to enforce the appropriate continuity conditions at an interface. Although the

developed mixed FEM works very accurately for all 2D geometries and regular Cartesian

3D geometries, it has so far not yielded success for curved 3D geometries. Therefore,

for 3D harmonic and transient analysis problems, we propose and use a modified form

of the potential formulation that overcomes the disadvantages of the standard potential

method, especially on non-convex domains.

Electromagnetic radiation and scattering in an exterior domain traditionally involved

imposing a suitable absorbing boundary condition (ABC) on the truncation bound-

ary of the numerical domain to inhibit reflection from it. In this work, based on the

Wilcox asymptotic expansion of the electric far-field, we propose an amplitude formu-

lation within the framework of the nodal FEM, whereby the highly oscillatory radial

part of the field is separated out a-priori so that the standard Lagrange interpolation

functions have to capture a relatively gently varying function. Since these elements can

be used in the immediate vicinity of the radiator or scatterer (with few exceptions which

we enumerate), it is more effective compared to methods of imposing ABCs, especially

for high-frequency problems. We show the effectiveness of the proposed formulation
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on a wide variety of radiation and scattering problems involving both conducting and

dielectric bodies, and involving both convex and non-convex domains with sharp corners.

The Time Domain Finite Element Method (TDFEM) has been used extensively to

solve transient electromagnetic radiation and scattering problems. Although conserva-

tion of energy in electromagnetics is well-known, we show in this work that there are

additional quantities that are also conserved in the absence of loading. We then show

that the developed time-stepping strategy (which is closely related to the trapezoidal

rule) mimics these continuum conservation properties either exactly or to a very good

approximation. Thus, the developed numerical strategy can be said to be ‘uncondition-

ally stable’ (from an energy perspective) allowing the use of arbitrarily large time-steps.

We demonstrate the high accuracy and robustness of the developed method for solving

both interior and exterior domain radiation problems, and for finding the scattered field

from conducting and dielectric bodies.

In the field of magneto-hydrodynamics, we develop a monolithic strategy based on

a continuous velocity-pressure formulation that is known to satisfy the Babuska-Brezzi

(BB) conditions. The magnetic field is interpolated in the same way as the velocity field,

and the entire formulation is within a nodal finite element framework. Both transient and

steady-state formulations are developed for two- and three-dimensional geometries. An

exact linearization of the monolithic strategy ensures that rapid (quadratic) convergence

is achieved within each time (or load) step, while the stable nature of the interpolations

used ensure that no instabilities arise in the solution. Good agreement with analytical

solutions, even with the use of very coarse meshes, shows the efficacy of the developed

formulation.


