
Abstract

A Coarse-Grained Reconfigurable Architecture (CGRA) is a processing plat-
form which constitutes an interconnection of coarse-grained computation
units (viz. Function Units (FUs), Arithmetic Logic Units (ALUs)). These units
communicate directly, viz. send-receive like primitives, as opposed to the
shared memory based communication used in multi-core processors. CGRAs
are a well-researched topic and the design space of a CGRA is quite large.
The design space can be represented as a 7-tuple (C,N, T, P,O,M,H) where
each of the terms have the following meaning: C - choice of computation
unit, N - choice of interconnection network, T - Choice of number of con-
text frame (single or multiple), P - presence of partial reconfiguration, O -
choice of orchestration mechanism, M - design of memory hierarchy and H -
host-CGRA coupling. In this thesis, we develop an architectural framework
for a Macro-Dataflow based CGRA where we make the following choice for
each of these parameters: C - ALU, N - Network-on-Chip (NoC), T - Mul-
tiple contexts, P - support for partial reconfiguration, O - Macro Dataflow
based orchestration, M - data memory banks placed at the periphery of the
reconfigurable fabric (reconfigurable fabric is the name given to the intercon-
nection of computation units), H - loose coupling between host processor
and CGRA, enabling our CGRA to execute an application independent of the
host-processor’s intervention. The motivations for developing such a CGRA
are:

• To execute applications efficiently through reduction in reconfiguration
time (i.e. the time needed to transfer instructions and data to the
reconfigurable fabric) and reduction in execution time through better
exploitation of all forms of parallelism: Instruction Level Parallelism
(ILP), Data Level Parallelism (DLP) and Thread/Task Level Parallelism
(TLP). We choose a macro-dataflow based orchestration framework in
combination with partial reconfiguration so as to ease exploitation of
TLP and DLP. Macro-dataflow serves as a light weight synchronization
mechanism. We experiment with two variants of the macro-dataflow
orchestration units, namely: hardware controlled orchestration unit
and the compiler controlled orchestration unit. We employ a NoC as it
helps reduce the reconfiguration overhead.

iv

• To permit customization of the CGRA for a particular domain through
the use of domain-specific custom-Intellectual Property (IP) blocks.
This aids in improving both application performance and makes it
energy efficient.

• To develop a CGRA which is completely programmable and accepts
any program written using the C89 standard. The compiler and the
architecture were co-developed to ensure that every feature of the ar-
chitecture could be automatically programmed through an application
by a compiler.

In this CGRA framework, the orchestration mechanism (O) and the host-
CGRA coupling (H) are kept fixed and we permit design space exploration
of the other terms in the 7-tuple design space. The mode of compilation
and execution remains invariant of these changes, hence referred to as a
framework.

We now elucidate the compilation and execution flow for this CGRA
framework. An application written in C language is compiled and is trans-
formed into a set of temporal partitions, referred to as HyperOps in this
thesis. The macro-dataflow orchestration unit selects a HyperOp for execu-
tion when all its inputs are available. The instructions and operands for a
ready HyperOp are transferred to the reconfigurable fabric for execution.
Each ALU (in the computation unit) is capable of waiting for the availability
of the input data, prior to issuing instructions. We permit the launch and
execution of a temporal partition to progress in parallel, which reduces the
reconfiguration overhead. We further cut launch delays by keeping loops
persistent on fabric and thus eliminating the need to launch the instructions.
The CGRA framework has been implemented using Bluespec System Veri-
log. We evaluate the performance of two of these CGRA instances: one for
cryptographic applications and another instance for linear algebra kernels.
We also run other general purpose integer and floating point applications to
demonstrate the generic nature of these optimizations. We explore various
microarchitectural optimizations viz. pipeline optimizations (i.e. changing
value of T), different forms of macro dataflow orchestration such as hard-
ware controlled orchestration unit and compiler-controlled orchestration
unit, different execution modes including resident loops, pipeline parallelism,
changes to the router etc. As a result of these optimizations we observe 2.5×
improvement in performance as compared to the base version. The reconfig-
uration overhead was hidden through overlapping launching of instructions
with execution making. The perceived reconfiguration overhead is reduced
drastically to about 9-11 cycles for each HyperOp, invariant of the size of the
HyperOp. This can be mainly attributed to the data dependent instruction
execution and use of the NoC. The overhead of the macro-dataflow execution
unit was reduced to a minimum with the compiler controlled orchestration
unit.

To benchmark the performance of these CGRA instances, we compare the
performance of these with an Intel Core 2 Quad running at 2.66GHz. On the
cryptographic CGRA instance, running at 700MHz, we observe one to two
orders of improvement in performance for cryptographic applications and up
to one order of magnitude performance degradation for linear algebra CGRA
instance. This relatively poor performance of linear algebra kernels can be
attributed to the inability in exploiting ILP across computation units inter-
connected by the NoC, long latency in accessing data memory placed at the
periphery of the reconfigurable fabric and unavailability of pipelined floating
point units (which is critical to the performance of linear algebra kernels).
The superior performance of the cryptographic kernels can be attributed to
higher computation to load instruction ratio, careful choice of custom IP
block, ability to construct large HyperOps which allows greater portion of the
communication to be performed directly (as against communication through
a register file in a general purpose processor) and the use of resident loops
execution mode. The power consumption of a computation unit employed
on the cryptography CGRA instance, along with its router is about 76mW,
as estimated by Synopsys Design Vision using the Faraday 90nm technology
library for an activity factor of 0.5. The power of other instances would be
dependent on specific instantiation of the domain specific units. This implies
that for a reconfigurable fabric of size 5× 6 the total power consumption is
about 2.3W. The area and power (84mW) dissipated by the macro dataflow
orchestration unit, which is common to both instances, is comparable to a
single computation unit, making it an effective and low overhead technique
to exploit TLP.

vi

