Show simple item record

dc.contributor.advisorPrasad, Kavirayani R
dc.contributor.authorGutala, Phaneendra
dc.date.accessioned2018-03-24T16:38:56Z
dc.date.accessioned2018-07-30T15:13:13Z
dc.date.available2018-03-24T16:38:56Z
dc.date.available2018-07-30T15:13:13Z
dc.date.issued2018-03-24
dc.date.submitted2013
dc.identifier.urihttp://etd.iisc.ac.in/handle/2005/3302
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/4164/G25664-Abs.pdfen_US
dc.description.abstractSection I of the thesis deals with the enantiospecific total synthesis of phomopsolide B. Phomopsolide B was isolated from a strain of Phomopsis Oblonga. Enantiospecific total synthesis of phomopsolide B was accomplished in 13 overall yield in 12 linear steps using (S)-lactic acid and L-tartaric acid as chiral pool precursors. Present approach involves the efficient use of -keto phosphonate derived from commercially available (S)-ethyl lactate. Horner-Wadsworth-Emmons reaction and Still-Gennari olefination were employed as key reactions in the synthesis (scheme 1). Scheme 1: Total synthesis of phomopsolide B. [This work has been published: Prasad, K. R.; Gutala, P. Tetrahedron 2012, 68, 7489-7493.] Section II of the thesis describes the total synthesis of macrosphelides A and E which are isolated from a culture broth of Microsphaeropsis sp. FO-5050 and from the strain Periconia byssoides. Total synthesis of macrosphelides A and E was accomplished in 19 overall yield from commercially available (S)-ethyl lactate. Horner-Wadsworth-Emmons reaction and Yamaguchi lactonization were employed as key reactions for the total synthesis of macrosphelides A and E (scheme 2). Scheme 2: Total synthesis of macrosphelides A and E. [This work has been published: Prasad, K. R.; Gutala, P. Tetrahedron 2011, 67, 4514-4520.] Section III of the thesis deals with total synthesis and determination of absolute configuration of synargentolide B 1. Synargentolide B 1 is a 5,6-dihydro--pyrone containing natural product and was isolated from Syncolostemon Argenteus by Rivett et al. in 1998 (fig 1). The relative stereochemistry at C-6, C-6′ positions in synargentolide B 1 was assigned to be R, S respectively based on the positive cotton effect in the CD spectrum. Threo stereochemistry was proposed for the C1′-C2′ diol unit in synargentolide B 1 based on the NMR studies. The stereochemistry at C-5 could not be assigned, hence the structure of synargentolide B 1 was tentatively proposed as 6R-[5,6S-(diacetyloxy)-1,2-(dihydroxy)-3Eheptenyl]-5,6-dihydro-2H-pyran-2-one (fig. 1). Figure 1: Putative structure of synargentolide B 1. Based on the tentative stereochemistry at the C-6, C-6′ positions proposed by Rivett et al. and taking into consideration the threo relationship for the C-1′-C-2′ diol unit, it is anticipated that the structure of synargentolide B 1 could be one of the four possible diastereomers 1a-1d (fig 2). Figure 2: Possible diastereomers of synargentolide B (1a-d). Incidentally, one of the diastereomers 6R-[5R,6S-(diacetyloxy)-1S,2R-(dihydroxy)- 3E-heptenyl]-5,6-dihydro-2H-pyran-2-one 1d was a reported natural product isolated in 1990 from Hyptis oblangifolia by Pereda-Miranda, R. et al. along with its corresponding diacetylated product 2 (fig 3). Fig. 3: Natural products isolated from Hyptis oblangifolia by Pereda-Miranda, R. et al. Total synthesis and determination of absolute configuration of synargentolide B 1 were accomplished by synthesizing four possible diastereomers of the natural product (1a-1d) and by comparison of the spectral data of all synthesized diastereomers with that of reported for the natural product. Wittig-Horner reaction of -keto phosphonate derived from (S)-lactic acid and ring closing metathesis reaction were employed as key reactions in the total synthesis of synargentolide B 1 (scheme 3 and 4). Scheme 3: Total synthesis of possible diastereomers of synargentolide B (1a, 1b). Scheme 4: Total synthesis of possible diastereomers of synargentolide B (1c, 1d). [This work has been published: Prasad, K. R.; Gutala, P. J. Org. Chem. (in press)]. It was found that spectral data of 1a, 1b, 1c were not in agreement with that reported for synargentolide B 1. However spectral data of 1d was in complete agreement with the data reported for synargentolide B 1. Spectral data of 1d was also in complete agreement with the data reported for the natural product isolated by Pereda-Miranda, R. et al. Since the absolute stereochemistry of tetraacetate 2 is identical to the absolute stereochemistry of 1d, we wanted to confirm the integrity of the diol 1d by synthesizing the corresponding acetate 2 which was also a natural product isolated by Pereda-Miranda et al. 1H NMR data of the synthesized tetraacetate 2 was in agreement with that reported for the isolated tetraacetate, while discrepancies were observed in the 13C NMR spectral data. To clear the uncertainty, X-ray crystal structure analysis of the tetraacetate 2 was performed. It was comprehensively proved that the structure of synthesized tetraacetate 2 was indeed same as the putative structure proposed for the isolated tetraacetate by Pereda-Miranda et al. The crystal structure analysis also confirmed the absolute stereochemistry of the tetraacetate 2 and 1d (synargentolide B 1). (For structural formula pl refer the abstract pdf file)en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG25664en_US
dc.subjectPhomopsolide B - Enantiospecific Total Synthesisen_US
dc.subjectMacrosphelides - Enantiospecific Total Synthesisen_US
dc.subjectSynargentolide B - Total Synthesisen_US
dc.subjectOrganic Synthesisen_US
dc.subjectBio-active Natural Products - Synthesisen_US
dc.subjectNanural Products - Enantiospecific Total Synthesisen_US
dc.subjectNatural Products - Stereochemistryen_US
dc.subjectEnantiopure Products - Synthesisen_US
dc.subjectChiralityen_US
dc.subjectPhomopsis Oblongaen_US
dc.subject.classificationOrganic Chemistryen_US
dc.titleEnantiospecific Total Synthesis of Phomopsolide B, Macrosphelides A & E and Total Synthesis & Determination of Absolute Configuration of Synargentolide Ben_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record