Search
Now showing items 1-4 of 4
Temporal Point Processes for Forecasting Events in Higher-Order Networks
Real-world systems consisting of interacting entities can be effectively represented as time-evolving networks or graphs, where the entities are depicted as nodes, and the interactions between them are represented as ...
Performance Characterization and Optimizations of Traditional ML Applications
Even in the era of Deep Learning based methods, traditional machine learning methods with large data sets continue to attract significant attention. However, we find an apparent lack of a detailed performance characterization ...
Representing Networks: Centrality, Node Embeddings, Community Outliers and Graph Representation
Networks are ubiquitous. We start our technical work in this thesis by exploring the classical concept of node centrality (also known as influence measure) in information networks. Like clustering, node centrality is also ...
Protecting Deep Learning Models on Cloud Platforms with Trusted Execution Environments
Deep learning is rapidly integrated into different applications, from medical imaging to financial products. Organisations are spending enormous financial resources to train deep learning models. Often, many organisations ...

