• Acyclic Edge Coloring Of Graphs 

      Basavaraju, Manu (2013-10-07)
      A proper edge coloring of G =(V,E)is a map c : E → C (where C is the set of available colors ) with c(e) ≠ c(ƒ) for any adjacent edges e,f. The minimum number of colors needed to properly color the edges of G, is called ...
    • Boxicity And Cubicity : A Study On Special Classes Of Graphs 

      Mathew, Rogers (2014-06-02)
      Let F be a family of sets. A graph G is an intersection graph of sets from the family F if there exists a mapping f : V (G)→ F such that, An interval graph is an intersection graph of a family of closed intervals on the ...
    • Boxicity, Cubicity And Vertex Cover 

      Shah, Chintan D (2010-09-28)
      The boxicity of a graph G, denoted as box(G), is the minimum dimension d for which each vertex of G can be mapped to a d-dimensional axis-parallel box in Rd such that two boxes intersect if and only if the corresponding ...
    • Intersection Graphs Of Boxes And Cubes 

      Francis, Mathew C (2011-01-25)
      A graph Gis said to be an intersection graph of sets from a family of sets if there exists a function ƒ : V(G)→ such that for u,v V(G), (u,v) E(G) ƒ (u) ƒ (v) ≠ . Interval graphs are thus the intersection graphs ...
    • Rainbow Colouring and Some Dimensional Problems in Graph Theory 

      Rajendraprasad, Deepak (2018-04-05)
      This thesis touches three different topics in graph theory, namely, rainbow colouring, product dimension and boxicity. Rainbow colouring An edge colouring of a graph is called a rainbow colouring, if every pair of vertices ...
    • Rainbow Connection Number Of Graph Power And Graph Products 

      Arunselvan, R (2014-09-09)
      The minimum number of colors required to color the edges of a graph so that any two distinct vertices are connected by at least one path in which no two edges are colored the same is called its rainbow connection number. ...