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ABSTRACT 

Model order reduction (MOR) refers to the process of reducing the size of large 

scale discrete systems with the goal of capturing their behavior in a small and tractable 

model known as the reduced order model (ROM). ROMs are invariably constructed by 

projecting the original system onto a low rank subspace that captures the physics for 

specified range/s of parameter/s. The parameters, say for electromagnetic scattering, 

can be the frequency of excitation, angle of incidence, and/or material parameters. 

Thus, ROMs enable fast parameter sweep analysis and quick prototyping. 

Historically, a majority of the MOR techniques dealt with systems that are either 

linear or linearizable. Such techniques were developed around the numerically robust 

and computationally efficient Krylov subspace methods such as the Arnoldi or the 

Lanczos algorithm for single input, single output (SISO) systems. For multiple input, 

multiple output (MIMO) case, the block versions of these algorithms were used. In 

particular, the Lanczos algorithm could be used to construct a Padé approximation of 

the original system. Furthermore, since Krylov subspace based ROMs could preserve 

important attributes of the original system, like passivity, they were specifically popular 

in large-scale interconnect modeling. 

However, the frequency domain finite element method (FEM) (used in this 

work), in the presence of absorbing boundaries (or perfectly matched layers) and/or 

losses in the media leads to matrix systems that exhibit nonlinear dependence on the 

frequency of excitation. One can approximate this nonlinear dependence with a matrix 

polynomial system through Taylor expansion and linearize the system followed by a 

projection via Arnoldi (PVA) or Padé via Lanczos (PVL) to construct the ROM. 

However, linearizations usually increase the system size depending upon the 

polynomial degree besides having a different sparsity pattern than the matrix 

polynomial. Alternatively, one can tackle the nonlinearity directly by matching the 

moments using what is known as asymptotic waveform evaluation (AWE). AWE is 

inherently an ill-conditioned process. A recent work known as the well-conditioned 

AWE (WCAWE) improves its conditioning by enforcing implicit orthonormalization 
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while still matching moments, by introducing some correction terms. However, 

WCAWE can be cumbersome to implement and appears to be inherently sequential. 

This work reports a novel perspective on the AWE space and proposes a 

parallelizable multilevel Krylov subspace generation technique that improves the 

accuracy/bandwidth of the ROM even further.  

We also introduce a novel adaptation of the Jacobi-Davidson algorithm, which 

is used to solve nonlinear eigenvalue problems (NLEVP), to target solutions and their 

derivatives (AWE space) for the matrix system rather than the underlying NLEVP, and 

formulate its well-conditioned form. By doing so, we enable the use of a new 

preconditioned iterative solver for AWE. 

Finally, noting the bottleneck posed by the reassembly of excitation vector 

derivatives at the expansion points in certain types of multipoint AWE ROMs, we 

propose an algorithm to reuse the derivatives, thus saving on the ROM setup time 

considerably, without sacrificing accuracy. 

The efficacy of the proposed algorithms is verified through several practical 

examples. The work is concluded with pointers to many possibilities for future research, 

like preconditioners, parallelization and domain-decomposition. 

 

 

 

 

 

 


